METHODS: The survey was carried out using a questionnaire given to local dental practitioners. Glove friction and water absorption measurements were made using specially designed equipment.
RESULTS: The survey showed that a selected group of dentist and dental surgery assistants preferred hydrogel-coated gloves, particularly for damp donning, durability and long-term wear comfort. Laboratory measurements showed that the hydrogel coating gave a low friction coefficient against damp skin. The coating was durable, and absorbed water more readily than other treatments.
CONCLUSION: A survey of dental practitioners and dental surgery assistants and laboratory measurements indicates that hydrogel-coated gloves have superior properties, and are preferred to other non-sterile glove types.
Methods: The maize seeds were first photobiomodulated with two lasers: 1) a helium-neon (He-Ne) red laser (632.8 nm), and 2) a neodymium-doped yttrium aluminum garnet (Nd:YAG) green laser (532 nm). Following three replications of randomized complete block design (RCBD), four irradiation treatments were applied (45 s, 65 s, 85 s, and 105 s) at two power intensities (2 mW/cm2 and 4 mW/cm2).
Results: Based on the results, maize seeds pretreated with a green laser and 2 mW/cm2 power intensity for 105 s exhibited the highest rate of seed emergence (96%) compared to the untreated control seeds with a lower seed emergence rate (62.5%). Furthermore, maize seeds treated with a red laser for 45 s showed an increased vigor index compared to the other treatment options and the control (P starch contents of the seeds irradiated with the green laser were 17.54%, 6.18%, and 73.32%, respectively, compared to the seeds irradiated by the red laser with 16.51%, 6.33%, and 71.05%, respectively.
Conclusions: The photo biomodulation of maize seeds using a green laser light can improve the field emergence, seedling growth, and seed quality of the treated seed compared to the red laser treatment.