Displaying publications 161 - 180 of 346 in total

Abstract:
Sort:
  1. Norhayati MM, Mazlyzam AL, Asmah R, Fuzina H, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:184-5.
    PMID: 15468879
    Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
    Matched MeSH terms: Microscopy, Electron, Transmission
  2. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al.
    Int J Nanomedicine, 2012;7:5603-10.
    PMID: 23341739 DOI: 10.2147/IJN.S36786
    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.
    Matched MeSH terms: Microscopy, Electron, Transmission
  3. Kapitonova MY, Mansor O
    Malays J Pathol, 2003 Jun;25(1):15-27.
    PMID: 16196374
    OBJECTIVE: To determine in situ using TEM the balance of apoptosis and necrosis in the articular cartilage of patients with inflammatory (rheumatoid arthritis and seronegative spondyloarthritis) and degenerative (osteoarthritis) joint diseases and to establish possible correlation between the cell death rate and the matrix vesicles formation.
    METHODS: Cartilage samples of the knee joint were obtained from patients with rheumatoid arthritis (RA, 18 cases), osteoarthritis (OA, 22 cases), Reiter's disease (RD, 9 cases), peripheral form of the ankylosing spondyloarthritis (AS, 6 cases) and psoriatic arthritis (PA, 6 cases) during arthroscopy or knee surgery. Normal samples taken from autopsy cases without a history of joint diseases were used as control. Samples were processed for TEM with subsequent semi-quantitative estimation of the cell death rate in the superficial, middle and deep zone of non-calcified articular cartilage, and computer-aided ultramorphometric evaluation of the matrix vesicles of different types.
    RESULTS: Both apoptotic and necrotic cell death could be identified in the cartilage of patients with inflammatory joint diseases, including seronegative spondyloarthritides and degenerative arthropathies. Apoptosis dominated over necrosis in all examined arthritides, including RA patients in which necrosis of the chondrocyte was the most frequent among arthropathies, while the highest apoptotic cell death rate was discovered in OA in which it correlated with the volume and numeric density of the matrix vesicles. These data provide evidence that apoptosis may contribute to the cartilage breakdown not only in RA and OA but also in the seronegative spondyloarthritides, which had a significantly higher apoptotic rate than the normal cartilage.
    Matched MeSH terms: Microscopy, Electron, Transmission
  4. Khoo CC, Tan KH
    Microsc Res Tech, 2005 Aug 1;67(5):219-26.
    PMID: 16170821 DOI: 10.1002/jemt.20199
    Sexually mature males of Bactrocera papayae are strongly attracted to and consume methyl eugenol (ME). Upon consumption, ME is biotransformed to two phenylpropanoids, 2-allyl-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (CF), that are transported in the hemolymph, sequestered and stored in the rectal glands, and subsequently released as sex and aggregation pheromones during courtship. To date, very little work on the ultrastructure and anatomy of the rectal gland has been done, and the accumulation of phenylpropanoids in the rectal glands of males has not been observed visually. Our objectives are to describe the anatomy and fine structures of the rectal glands of males and females and to observe the accumulation of autofluorescent compounds in the rectal glands of males. The rectal glands of males and females have four rectal papillae with each papilla attached to a rectal pad. The rectal pads protrude from the rectal gland as the only surfaces of the gland that are not surrounded by muscles. The rectal papillae of ME-fed males had oil droplets and autofluorescent compounds that were absent from those of ME-deprived males. The autofluorescent compounds accumulated in the rectal sac, which is an evagination that is not found in rectal glands of females. The accumulation of these compounds increased with time and reached maximum at a day post-ME feeding and decreased thereafter. This trend is similar to the accumulation pattern of phenylpropanoids, CF and DMP in the rectal gland.
    Matched MeSH terms: Microscopy, Electron, Transmission
  5. Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP
    Food Chem, 2016 Mar 1;194:416-23.
    PMID: 26471574 DOI: 10.1016/j.foodchem.2015.08.045
    A solvent displacement method was used to prepare lutein nanodispersions. The effects of processing parameters (addition method, addition rate, stirring time and stirring speed) and emulsifiers with different stabilizing mechanisms (steric, electrostatic, electrosteric and combined electrostatic-steric) on the particle size and particle size distribution (PSD) of the nanodispersions were investigated. Among the processing parameters, only the addition method and stirring time had significant effects (p<0.05) on the particle size and PSD. For steric emulsifiers, Tween 20, 40, 60 and 80 were used to produce nanodispersions successfully with particle sizes below 100nm. Tween 80 (steric) was then chosen for further comparison against sodium dodecyl sulfate (SDS) (electrostatic), sodium caseinate (electrosteric) and SDS-Tween 80 (combined electrostatic-steric) emulsifiers. At the lowest emulsifier concentration of 0.1%, all the emulsifiers invariably produced stable nanodispersions with small particle sizes (72.88-142.85nm) and narrow PSDs (polydispersity index<0.40).
    Matched MeSH terms: Microscopy, Electron, Transmission
  6. Kamari A, Aljafree NF, Yusoff SN
    Int J Biol Macromol, 2016 Jul;88:263-72.
    PMID: 27041651 DOI: 10.1016/j.ijbiomac.2016.03.071
    In this study, an amphiphilic chitosan derivative namely N,N-dimethylhexadecyl carboxymethyl chitosan (DCMC) was synthesised and applied for the first time as a carrier agent for rotenone. The physical and chemical properties of DCMC were characterised by using Fourier Transform Infrared Spectrometer (FTIR), Proton Nuclear Magnetic Resonance Spectrometer ((1)H NMR), CHN-O Elemental Analyser, Thermogravimetric Analyser (TGA) and Differential Scanning Calorimeter (DSC). DCMC was soluble in acidic (except pH 4), neutral and basic media with percent of transmittance (%T) values ranged from 67.2 to 99.4%. The critical micelle concentration (CMC) was determined as 0.095mg/mL. Transmission Electron Microscopy (TEM) analysis confirmed that DCMC has formed self-aggregates and exhibited spherical shape with the size of 65.5-137.0nm. The encapsulation efficiency (EE) and loading capacity (LC) of DCMC micelles with different weight ratios (DCMC:rotenone; 5:1, 50:1 and 100:1) were determined by using High Performance Liquid Chromatography (HPLC). The weight ratio of 100:1 gave the best EE with the value of more than 95.0%. DCMC micelles performed an excellent ability to control the release of rotenone, of which 99.0% of rotenone was released within 48h. Overall, DCMC has several key features to be an effective carrier agent for pesticide formulations.
    Matched MeSH terms: Microscopy, Electron, Transmission
  7. Qian YS, Ramamurthy S, Candasamy M, Shadab M, Kumar RH, Meka VS
    Curr Pharm Biotechnol, 2016;17(6):549-55.
    PMID: 26813303
    CONTEXT: Kaempferol has a large particle size and poor water solubility, leading to poor oral bioavailability. The present work aimed to develop a kaempferol nanosuspension (KNS) to improve pharmacokinetics and absolute bioavailability.

    METHODS: A nanosuspension was prepared using high pressure homogenization (HPH) techniques. The physico-chemical properties of the kaempferol nanosuspension (KNS) were characterized using photon correlation spectroscopy (PCS), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and x-ray diffractometry (XRD). A reversephase high performance liquid chromatography (RP-HPLC) method for the analysis of the drug in rat plasma was developed and validated as per ICH guidelines. In vivo pharmacokinetic parameters of oral pure kaempferol solution, oral kaempferol nanosuspension and intravenous pure kaempferol were assessed in rats.

    RESULTS AND DISCUSSION: The kaempferol nanosuspension had a greatly reduced particle size (426.3 ± 5.8 nm), compared to that of pure kaempferol (1737 ± 129 nm). The nanosuspension was stable under refrigerated conditions. No changes in physico-chemical characteristics were observed. In comparison to pure kaempferol, kaempferol nanosuspension exhibited a significantly (P<0.05) increased in Cmax and AUC(0-∞) following oral administration and a significant improvement in absolute bioavailability (38.17%) compared with 13.03% for pure kaempferol.

    CONCLUSION: These results demonstrate enhanced oral bioavailability of kaempferol when formulated as a nanosuspension.

    Matched MeSH terms: Microscopy, Electron, Transmission
  8. Abdullahi N, Saion E, Shaari AH, Al-Hada NM, Keiteb A
    PLoS One, 2015;10(5):e0125511.
    PMID: 25993127 DOI: 10.1371/journal.pone.0125511
    MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible regions compared with the commercial TiO2 (P25). The catalytic activity of these nanocomposites was determined by photooxidation of MB aqueous solution in the presence of visible light. The MWCNTs/TiO2 (1:3) mass ratio showed maximum degradation efficiency. However, its activity was more favourable in alkaline and a neutral pH than an acidic medium.
    Matched MeSH terms: Microscopy, Electron, Transmission
  9. Karim Z, Khan MJ, Maskat MY, Adnan R
    Prep Biochem Biotechnol, 2016 May 18;46(4):321-7.
    PMID: 25830286 DOI: 10.1080/10826068.2015.1031389
    This study aimed to work out a simple and high-yield procedure for the immobilization of horseradish peroxidase on silver nanoparticle. Ultraviolet-visible (UV-vis) and Fourier-transform infrared spectroscopy and transmission electron microscopy were used to characterize silver nanoparticles. Horseradish peroxidase was immobilized on β-cyclodextrin-capped silver nanoparticles via glutaraldehyde cross-linking. Single-cell gel electrophoresis (Comet assay) was also performed to confirm the genotoxicity of silver nanoparticles. To decrease toxicity, silver nanoparticles were capped with β-cyclodextrin. A comparative stability study of soluble and immobilized enzyme preparations was investigated against pH, temperature, and chaotropic agent, urea. The results showed that the cross-linked peroxidase was significantly more stable as compared to the soluble counterpart. The immobilized enzyme exhibited stable enzyme activities after repeated uses.
    Matched MeSH terms: Microscopy, Electron, Transmission
  10. Radakisnin R, Abdul Majid MS, Jamir MRM, Jawaid M, Sultan MTH, Mat Tahir MF
    Materials (Basel), 2020 Sep 17;13(18).
    PMID: 32957438 DOI: 10.3390/ma13184125
    The purpose of the study is to investigate the utilisation of Napier fiber (Pennisetum purpureum) as a source for the fabrication of cellulose nanofibers (CNF). In this study, cellulose nanofibers (CNF) from Napier fiber were isolated via ball-milling assisted by acid hydrolysis. Acid hydrolysis with different molarities (1.0, 3.8 and 5.6 M) was performed efficiently facilitate cellulose fiber size reduction. The resulting CNFs were characterised through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), particle size analyser (PSA), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The FTIR results demonstrated that there were no obvious changes observed between the spectra of the CNFs with different molarities of acid hydrolysis. With 5.6 M acid hydrolysis, the XRD analysis displayed the highest degree of CNF crystallinity at 70.67%. In a thermal analysis by TGA and DTG, cellulose nanofiber with 5.6 M acid hydrolysis tended to produce cellulose nanofibers with higher thermal stability. As evidenced by the structural morphologies, a fibrous network nanostructure was obtained under TEM and AFM analysis, while a compact structure was observed under FESEM analysis. In conclusion, the isolated CNFs from Napier-derived cellulose are expected to yield potential to be used as a suitable source for nanocomposite production in various applications, including pharmaceutical, food packaging and biomedical fields.
    Matched MeSH terms: Microscopy, Electron, Transmission
  11. Alazawy A, Arshad SS, Bejo MH, Omar AR, Tengku Ibrahim TA, Sharif S, et al.
    J Electron Microsc (Tokyo), 2011;60(4):275-82.
    PMID: 21593079 DOI: 10.1093/jmicro/dfr031
    Feline coronavirus (FCoV) consists of two biotypes based on their growth in cell culture and their antigenicity. Infections with FCoV are highly prevalent in the cat population worldwide. In this study, Felis catus whole fetus (Fcwf-4)cell culture was infected with FCoV UPM11C/08. Virus multiplication in cell culture was monitored and examined under the transmission electron microscope. The virus particles revealed the characteristic morphology of feline FCoV represented by envelope viruses surrounded by peplomers. Virus attachment and entry into the cell occurred 15 h post-infection (pi), and the myriad of virus particles were observed both extracellularly and intracellularly after 48 h pi. Thereafter, intracellular virus particles were observed to be present in vacuoles or present freely in the cytoplasm.
    Matched MeSH terms: Microscopy, Electron, Transmission
  12. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113182.
    PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182
    Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
    Matched MeSH terms: Microscopy, Electron, Transmission
  13. Kavi Rajan R, Hussein MZ, Fakurazi S, Yusoff K, Masarudin MJ
    Int J Mol Sci, 2019 Sep 20;20(19).
    PMID: 31547100 DOI: 10.3390/ijms20194667
    Naturally existing Chlorogenic acid (CGA) is an antioxidant-rich compound reported to act a chemopreventive agent by scavenging free radicals and suppressing cancer-causing mechanisms. Conversely, the compound's poor thermal and pH (neutral and basic) stability, poor solubility, and low cellular permeability have been a huge hindrance for it to exhibit its efficacy as a nutraceutical compound. Supposedly, encapsulation of CGA in chitosan nanoparticles (CNP), nano-sized colloidal delivery vector, could possibly assist in enhancing its antioxidant properties, in vitro cellular accumulation, and increase chemopreventive efficacy at a lower concentration. Hence, in this study, a stable, monodispersed, non-toxic CNP synthesized via ionic gelation method at an optimum parameter (600 µL of 0.5 mg/mL of chitosan and 200 µL of 0.7 mg/mL of tripolyphosphate), denoted as CNP°, was used to encapsulate CGA. Sequence of physicochemical analyses and morphological studies were performed to discern the successful formation of the CNP°-CGA hybrid. Antioxidant property (studied via DPPH (1,1-diphenyl-2-picrylhydrazyl) assay), in vitro antiproliferative activity of CNP°-CGA, and in vitro accumulation of fluorescently labeled (FITC) CNP°-CGA in cancer cells were evaluated. Findings revealed that successful formation of CNP°-CGA hybrid was reveled through an increase in particle size 134.44 ± 18.29 nm (polydispersity index (PDI) 0.29 ± 0.03) as compared to empty CNP°, 80.89 ± 5.16 nm (PDI 0.26 ± 0.01) with a maximal of 12.04 μM CGA loaded per unit weight of CNP° using 20 µM of CGA. This result correlated with Fourier-Transform Infrared (FTIR) spectroscopic analysis, transmission Electron Microscopy (TEM) and field emission scanning (FESEM) electron microscopy, and ImageJ evaluation. The scavenging activity of CNP°-CGA (IC50 5.2 ± 0.10 µM) were conserved and slightly higher than CNP° (IC50 6.4±0.78 µM). An enhanced cellular accumulation of fluorescently labeled CNP°-CGA in the human renal cancer cells (786-O) as early as 30 min and increased time-dependently were observed through fluorescent microscopic visualization and flow cytometric assessment. A significant concentration-dependent antiproliferation activity of encapsulated CGA was achieved at IC50 of 16.20 µM as compared to CGA itself (unable to determine from the cell proliferative assay), implying that the competent delivery vector, chitosan nanoparticle, is able to enhance the intracellular accumulation, antiproliferative activity, and antioxidant properties of CGA at lower concentration as compared to CGA alone.
    Matched MeSH terms: Microscopy, Electron, Transmission
  14. Djearamane S, Lim YM, Wong LS, Lee PF
    PeerJ, 2019;7:e7582.
    PMID: 31579572 DOI: 10.7717/peerj.7582
    Background: Zinc oxide nanoparticles (ZnO NPs) are widely used in household and cosmetic products which imply an increased releasing of these particles into the environment, especially aquatic ecosystems, resulting in the need of assessing the potential toxic effects of ZnO NPS on the aquatic organisms, particularly on microalgae which form the base for food chain of aquatic biota. The present study has investigated the dose- and time-dependent cellular accumulation and the corresponding cytotoxic effects of increasing concentrations of ZnO NPs from 10-200 μg/mL on microalga Haematococcus pluvialis at an interval of 24 h for 96 h.

    Methods: The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) was used to qualitatively detect the cellular accumulation of ZnO NPs in algal cells, while inductively coupled plasma optical emission spectrometry (ICP OES) was performed to quantify the cell associated-zinc in algal cells. The percentage of cell death, reduction in algal biomass, and loss in photosynthetic pigments were measured to investigate the cytotoxic effects of ZnO NPs on H. pluvialis. Extracellular and intracellular changes in algal cells resulted from the treatment of ZnO NPs were demonstrated through optical, scanning, and transmission electron microscopic studies.

    Results: SEM-EDX spectrum evidenced the accumulation of ZnO NPs in algal biomass and ICP OES results reported a significant (p < 0.05) dose- and time-dependent accumulation of zinc in algal cells from 24 h for all the tested concentrations of ZnO NPs (10-200 μg/mL). Further, the study showed a significant (p < 0.05) dose- and time-dependent growth inhibition of H. pluvialis from 72 h at 10-200 μg/mL of ZnO NPs. The morphological examinations revealed substantial surface and intracellular damages in algal cells due to the treatment of ZnO NPs.

    Discussion: The present study reported the significant cellular accumulation of ZnO NPs in algal cells and the corresponding cytotoxic effects of ZnO NPs on H. pluvialis through the considerable reduction in algal cell viability, biomass, and photosynthetic pigments together with surface and intracellular damages.

    Matched MeSH terms: Microscopy, Electron, Transmission
  15. Sucinda EF, Abdul Majid MS, Ridzuan MJM, Sultan MTH, Gibson AG
    Int J Biol Macromol, 2020 Jul 15;155:241-248.
    PMID: 32240733 DOI: 10.1016/j.ijbiomac.2020.03.199
    Cellulose nanowhisker (NWC) was extracted by hydrolysing Pennisetum purpureum (PP) fibres with acid and alkali. They were subjected to different periods of acid hydrolysis; 30, 45, and 60 min. NWC morphology and physicochemical properties were characterised by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), particle size analyser, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis. NWC3, which underwent the longest hydrolysis time, showed the smallest width and length, under TEM. All samples presented a needle-like shape under TEM and AFM; uneven lengths and irregular shapes under FESEM; and a broad range of distribution, with the particle size analyser. All samples exhibited a good crystallinity index (CrI)-72.0 to 74.6%. The highest CrI% corresponded to 60 min of acid hydrolysis. Thermogravimetric analysis showed thermal stability between 310.72 °C and 336.28 °C. Thus, cellulose nanowhisker from PP fibres, have high potential as bio-nanocomposites.
    Matched MeSH terms: Microscopy, Electron, Transmission
  16. Namasivayam P, Skepper J, Hanke D
    Plant Cell Rep, 2006 Sep;25(9):887-95.
    PMID: 16568254
    The Brassica napus secondary embryogenesis system requires no exogenous growth regulator to stimulate embryo development. It is stable embryogenically over a long period of culture and has a distinct pre-embryogenic stage. This system was used to investigate the morphological and cellular changes occurring in the embryogenic tissue compared to non-embryogenic tissue using various microscopy techniques. A unique ultrastructural feature designated the extracellular matrix (ECM) was observed on the surface of pre-embryogenic embryoids but not on the non-embryogenic individuals. The ECM layer was found to be dominant in the pre-embryogenic stage and reduced to fragments during embryo growth and development in mature embryogenic tissue. This is a novel aspect of the phenotype previously unreported in the Brassica system. This structure might be linked to acquisition of embryogenic competence.
    Matched MeSH terms: Microscopy, Electron, Transmission
  17. Jian Fui C, Xin Ting T, Sarjadi MS, Amin Z, Sarkar SM, Musta B, et al.
    ACS Omega, 2021 Mar 16;6(10):6766-6779.
    PMID: 33748590 DOI: 10.1021/acsomega.0c05840
    Highly active natural pandanus-extracted cellulose-supported poly(hydroxamic acid)-Cu(II) complex 4 was synthesized. The surface of pandanus cellulose was modified through graft copolymerization using purified methyl acrylate as a monomer. Then, copolymer methyl acrylate was converted into a bidentate chelating ligand poly(hydroxamic acid) via a Loosen rearrangement in the presence of an aqueous solution of hydroxylamine. Finally, copper species were incorporated into poly(hydroxamic acid) via the adsorption process. Cu(II) complex 4 was fully characterized by Fourier transform infrared (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses. The cellulose-supported Cu(II) complex 4 was successfully applied (0.005 mol %) to the Ullmann etherification of aryl, benzyl halides, and phenacyl bromide with a number of aromatic phenols to provide the corresponding ethers with excellent yield [benzyl halide (70-99%); aryl halide (20-90%)]. Cu(II) complex 4 showed high stability and was easily recovered from the reaction mixture. It could be reused up to seven times without loss of its original catalytic activity. Therefore, Cu(II) complex 4 can be commercially utilized for the preparation of various ethers, and this synthetic technique could be a part in the synthesis of natural products and medicinal compounds.
    Matched MeSH terms: Microscopy, Electron, Transmission
  18. Matmin J, Jalani MA, Osman H, Omar Q, Ab'lah N, Elong K, et al.
    Nanomaterials (Basel), 2019 Feb 14;9(2).
    PMID: 30769911 DOI: 10.3390/nano9020264
    The photochemical synthesis of two-dimensional (2D) nanostructured from semiconductor materials is unique and challenging. We report, for the first time, the photochemical synthesis of 2D tin di/sulfide (PS-SnS₂-x, x = 0 or 1) from thioacetamide (TAA) and tin (IV) chloride in an aqueous system. The synthesized PS-SnS₂-x were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), a particle size distribution analyzer, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermal analysis, UV⁻Vis diffuse reflectance spectroscopy (DR UV⁻Vis), and photoluminescence (PL) spectroscopy. In this study, the PS-SnS₂-x showed hexagonally closed-packed crystals having nanosheets morphology with the average size of 870 nm. Furthermore, the nanosheets PS-SnS₂-x demonstrated reusable photo-degradation of methylene blue (MB) dye as a water pollutant, owing to the stable electronic conducting properties with estimated bandgap (Eg) at ~2.5 eV. Importantly, the study provides a green protocol by using photochemical synthesis to produce 2D nanosheets of semiconductor materials showing photo-degradation activity under sunlight response.
    Matched MeSH terms: Microscopy, Electron, Transmission
  19. Mallikarjuna K, Nasif O, Ali Alharbi S, Chinni SV, Reddy LV, Reddy MRV, et al.
    Biomolecules, 2021 01 29;11(2).
    PMID: 33572968 DOI: 10.3390/biom11020190
    Continuously increasing energy demand and growing concern about energy resources has attracted much research in the field of clean and sustainable energy sources. In this context, zero-emission fuels are required for energy production to reduce the usage of fossil fuel resources. Here, we present the synthesis of Pd-Ag-decorated reduced graphene oxide (rGO) nanostructures using a green chemical approach with stevia extract for hydrogen production and antibacterial studies under light irradiation. Moreover, bimetallic nanostructures are potentially lime lighted due to their synergetic effect in both scientific and technical aspects. Structural characteristics such as crystal structure and morphological features of the synthesized nanostructures were analyzed using X-ray diffraction and transmission electron microscopy. Analysis of elemental composition and oxidation states was carried out by X-ray photoelectron spectroscopy. Optical characteristics of the biosynthesized nanostructures were obtained by UV-Vis absorption spectroscopy, and Fourier transform infrared spectroscopy was used to investigate possible functional groups that act as reducing and capping agents. The antimicrobial activity of the biosynthesized Pd-Ag-decorated rGO nanostructures was excellent, inactivating 96% of Escherichia coli cells during experiments over 150 min under visible light irradiation. Hence, these biosynthesized Pd-Ag-decorated rGO nanostructures can be utilized for alternative nanomaterial-based drug development in the future.
    Matched MeSH terms: Microscopy, Electron, Transmission
  20. Ismail S, Yusof NA, Abdullah J, Abd Rahman SF
    Materials (Basel), 2020 Jul 16;13(14).
    PMID: 32708531 DOI: 10.3390/ma13143168
    Arsenic poisoning in the environment can cause severe effects on human health, hence detection is crucial. An electrochemical-based portable assessment of arsenic contamination is the ability to identify arsenite (As(III)). To achieve this, a low-cost electroanalytical assay for the detection of As(III) utilizing a silica nanoparticles (SiNPs)-modified screen-printed carbon electrode (SPCE) was developed. The morphological and elemental analysis of functionalized SiNPs and a SiNPs/SPCE-modified sensor was studied using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The electrochemical responses towards arsenic detection were measured using the cyclic voltammetry (CV) and linear sweep anodic stripping voltammetry (LSASV) techniques. Under optimized conditions, the anodic peak current was proportional to the As(III) concentration over a wide linear range of 5 to 30 µg/L, with a detection limit of 6.2 µg/L. The suggested approach was effectively valid for the testing of As(III) found within the real water samples with good reproducibility and stability.
    Matched MeSH terms: Microscopy, Electron, Transmission
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links