Displaying publications 161 - 173 of 173 in total

Abstract:
Sort:
  1. Wong MTJ, Anuar NS, Noordin R, Tye GJ
    Acta Trop, 2024 Mar;251:107122.
    PMID: 38246399 DOI: 10.1016/j.actatropica.2024.107122
    Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.
  2. Lai MY, Ponnampalavanar SSS, Omar SFS, Lau YL
    Acta Trop, 2024 Mar;251:107120.
    PMID: 38199452 DOI: 10.1016/j.actatropica.2024.107120
    Combining the advantages of PCR and LAMP, we described a new technique, namely PCR-LAMP, for malaria diagnosis. The whole process of DNA amplification can be completed in 35 min. This hybrid amplification technique markedly improved the sensitivity of detection compared to the classic single PCR or LAMP assay alone. PCR-LAMP assay had a detection limit of 1 copy/µL for P. knowlesi and P. ovale, 0.1 copy/µL for P. vivax, P. falciparum and P. malariae, respectively. To facilitate the endpoint detection, xylenol orange was added. Positive samples were indicated in orange while negative reactions were violet. The inclusion of xylenol orange into the LAMP reaction mix significantly reduces the post-amplification workload. Without relying on the use of specific instruments, the color changes of the amplicons could be visualized directly through the naked eye. In conclusion, PCR-LAMP poses the potential to be developed as a new malaria molecular diagnosis tool.
  3. Tan PY, Loganathan R, Teng KT, Lee SC, Mohd Johari SN, Selvaduray KR, et al.
    Acta Trop, 2023 Apr;240:106860.
    PMID: 36775004 DOI: 10.1016/j.actatropica.2023.106860
    Notwithstanding the global efforts made to control intestinal parasitic infections, soil-transmitted helminth (STH) infections are still one of the most prevalent infections globally, especially in developing countries. A double-blinded, randomized controlled trial was conducted on 343 primary schoolchildren (8-12 years old) with vitamin A deficiency (VAD) in rural areas of Malaysia to investigate the effects of red palm olein (RPO)-enriched biscuits on STH reinfection rates and infection intensities. The effects of the RPO-enriched biscuits (experimental group, n = 153) and palm olein (PO)-enriched biscuits (control group, n = 190), were assessed at 3- and 6-month after the administration of complete triple-dose albendazole (one dose of 400 mg for three consecutive days). The overall STH infection rate at baseline was recorded at 65.6%. At 6-month, a significantly lower reinfection rate of A. lumbricoides was observed in the experimental group (35.3%) compared to the control group (60.0%) (P0.05). These findings suggest the potential beneficial effects of RPO-enriched biscuit supplementation on the reinfection of A. lumbricoides, which could be attributed to its high carotenoids content by enhancing host immune response and mucosal epithelium integrity. However, further studies are warranted to confirm whether RPO supplementation could result in similar parasite-specific beneficial effects in other community settings, as well as to explore the underlying mechanisms.
  4. Lai MY, Abdullah ML, Lau YL
    Acta Trop, 2024 May 11;255:107249.
    PMID: 38740319 DOI: 10.1016/j.actatropica.2024.107249
    BACKGROUND: Natural human infections by Plasmodium cynomolgi and P. inui have been reported recently and gain the substantial attention from Southeast Asian countries. Zoonotic transmission of non-human malaria parasites to humans from macaque monkeys occurred through the bites of the infected mosquitoes. The objective of this study is to establish real-time fluorescence loop-mediated isothermal amplification (LAMP) assays for the detection of zoonotic malaria parasites by combining real-time fluorescent technology with the isothermal amplification technique.

    METHODS: By using 18S rRNA as the target gene, the primers for P. cynomolgi, P. coatneyi and P. inui were newly designed in the present study. Four novel real-time fluorescence LAMP assays were developed for the detection of P. cynomolgi, P. coatneyi, P. inui and P. knowlesi. The entire amplification process was completed in 60 min, with the assays performed at 65 °C. By using SYTO-9 as the nucleic acid intercalating dye, the reaction was monitored via real-time fluorescence signal.

    RESULTS: There was no observed cross-reactivity among the primers from different species. All 70 field-collected monkey samples were successfully amplified by real-time fluorescence LAMP assays. The detection limit for P. cynomolgi, P. coatneyi and P. knowlesi was 5 × 109 copies/µL. Meanwhile, the detection limit of P. inui was 5 × 1010 copies/µL.

    CONCLUSION: This is the first report of the detection of four zoonotic malaria parasites by real-time fluorescence LAMP approaches. It is an effective, rapid and simple-to-use technique. This presented platform exhibits considerable potential as an alternative detection for zoonotic malaria parasites.

  5. Maisarah A, Mohamad S, Husain M, Abdullah S, Noordin R
    Acta Trop, 2024 May 04;255:107241.
    PMID: 38710263 DOI: 10.1016/j.actatropica.2024.107241
    Toxoplasma gondii is a neurotropic protozoan parasite that affects neuronal processing in the brain. This study aimed to investigate the prevalence of T. gondii infection in psychiatric disorder patients. We also investigated the potential association between sociodemographic, clinical manifestation, and behavior of Toxoplasma-seropositive patients with psychiatric disorders. Commercial ELISAs (IgG, IgM, and IgG avidity) using serum and PCR using buffy coat were performed on samples from 54 individuals in each of the following groups: patients diagnosed with depressive disorder, bipolar disorder, and schizophrenia, as well as psychiatrically healthy subjects (control group). They were recruited from the Hospital Universiti Sains Malaysia in Kelantan, Malaysia. Of 54 patients with depressive disorder, 24/54 (44.4 %) were seropositive for IgG, and four (16.7 %) were IgG+/IgM+. Among the latter, a high avidity index indicating a past infection was observed in half of the samples (50.0 %), and the other half (50.0 %) showed a low avidity index, indicating a possible recent infection. Meanwhile, 30/54 (55.6 %) patients with bipolar disorder were seropositive for IgG+, five (16.7 %) were IgG+/IgM+, and four of them had a high avidity index, and one had a low avidity index. Patients with schizophrenia showed 29/54 (53.7 %) seropositive for IgG, two of them (6.9 %) were IgG+/IgM+; one of latter had a high avidity index, and one had a low avidity index. Of 54 people in the control group, 37.0 % (20/54) were seropositive for T. gondii IgG antibodies. However, no significant difference was observed in seroprevalence between the control group and each patient group. No PCR-positive results were documented. A Chi-Square and multiple logistic regression showed that age (p = 0.031), close contact with cats/pets (p = 0.033) and contact with soil (p = 0.012) were significantly associated with Toxoplasma seropositivity in patients with psychiatric disorders. Additional research is needed to elucidate the causal relationships and underlying mechanisms.
  6. Yousefpanah K, Ebadi MJ, Sabzekar S, Zakaria NH, Osman NA, Ahmadian A
    Acta Trop, 2024 Sep;257:107277.
    PMID: 38878849 DOI: 10.1016/j.actatropica.2024.107277
    Over the past few years, the widespread outbreak of COVID-19 has caused the death of millions of people worldwide. Early diagnosis of the virus is essential to control its spread and provide timely treatment. Artificial intelligence methods are often used as powerful tools to reach a COVID-19 diagnosis via computed tomography (CT) samples. In this paper, artificial intelligence-based methods are introduced to diagnose COVID-19. At first, a network called CT6-CNN is designed, and then two ensemble deep transfer learning models are developed based on Xception, ResNet-101, DenseNet-169, and CT6-CNN to reach a COVID-19 diagnosis by CT samples. The publicly available SARS-CoV-2 CT dataset is utilized for our implementation, including 2481 CT scans. The dataset is separated into 2108, 248, and 125 images for training, validation, and testing, respectively. Based on experimental results, the CT6-CNN model achieved 94.66% accuracy, 94.67% precision, 94.67% sensitivity, and 94.65% F1-score rate. Moreover, the ensemble learning models reached 99.2% accuracy. Experimental results affirm the effectiveness of designed models, especially the ensemble deep learning models, to reach a diagnosis of COVID-19.
  7. Vythilingam I, Jeyaprakasam NK
    Acta Trop, 2024 Sep;257:107280.
    PMID: 38908421 DOI: 10.1016/j.actatropica.2024.107280
    Malaria continues to be a global public health problem although it has been eliminated from many countries. Sri Lanka and China are two countries that recently achieved malaria elimination status, and many countries in Southeast Asia are currently in the pipeline for achieving the same goal by 2030. However, Plasmodium knowlesi, a non-human primate malaria parasite continues to pose a threat to public health in this region, infecting many humans in all countries in Southeast Asia except for Timor-Leste. Besides, other non-human primate malaria parasite such as Plasmodium cynomolgi and Plasmodium inui are infecting humans in the region. The non-human primates, the long-tailed and pig-tailed macaques which harbour these parasites are now increasingly prevalent in farms and forest fringes close by to the villages. Additionally, the Anopheles mosquitoes belonging to the Lecuosphyrus Group are also present in these areas which makes them ideal for transmitting the non-human primate malaria parasites. With changing landscape and deforestation, non-human primate malaria parasites will affect more humans in the coming years with the elimination of human malaria. Perhaps due to loss of immunity, more humans will be infected as currently being demonstrated in Malaysia. Thus, control measures need to be instituted rapidly to achieve the malaria elimination status by 2030. However, the zoonotic origin of the parasite and the changes of the vectors behaviour to early biting seems to be the stumbling block to the malaria elimination efforts in this region. In this review, we discuss the challenges faced in malaria elimination due to deforestation and the serious threat posed by non-human primate malaria parasites.
  8. Adler PH, Low VL, Tan TK, Takaoka H, Otsuka Y
    Acta Trop, 2024 Sep 09.
    PMID: 39260759 DOI: 10.1016/j.actatropica.2024.107399
    As an island about 150 km from the mainland, Taiwan would be expected to have endemic species. About 64% of its 36 species of black flies are considered endemic, more than twice the level of endemicity that has been recorded for all insects on the island. To begin assessing the validity of the high level of endemism for the Simuliidae, we used giant chromosome banding patterns and cytochrome c oxidase I (COI) sequences, against a well-defined morphological backdrop, to evaluate three of Taiwan's black flies, Simulium chungi Takaoka & Huang, S. pingtungense Huang & Takaoka, and S. sakishimaense Takaoka. Molecular data revealed high similarity of populations of S. sakishimaense in Taiwan and at the type locality on Ishigaki Island, Japan, about 180 km to the east. Thus, populations referred to as S. sakishimaense in Taiwan are conspecific with typical S. sakishimaense in Japan, confirming their non-endemicity in Taiwan. Simulium sakishimaense might have reached Ishigaki by island hopping via Taiwan from the Chinese mainland. Chromosomes and the COI gene agree with morphology that S. sakishimaense is a member of the S. multistriatum species group although the chromosomal banding patterns do not indicate that it is distinct from S. fenestratum Edwards on the mainland. Although molecular sequences indicate S. sakishimaense is monophyletic, this taxon falls within the same Operational Taxonomic Unit as nine other members of the S. multistriatum group, including S. fenestratum. Simulium pingtungense, in agreement with morphology, is molecularly distinct from the 10 other analyzed members of the S. striatum species group, tentatively suggesting that it is endemic to Taiwan, pending analysis of samples from mainland China. Simulium chungi in Taiwan is chromosomally and molecularly unique, with larvae resembling those of S. saskishimaense. It is not, however, a member of either the S. multistriatum or S. striatum species groups. For now, the S. chungi species group remains a legitimate taxon consisting of two species. Strengthening the case for endemic taxa in Taiwan awaits analysis of key samples from the Chinese mainland.
  9. Izwan-Anas N, Halim MRA, Low VL, Adler PH, Ya'cob Z
    Acta Trop, 2024 Aug 28;259:107374.
    PMID: 39214235 DOI: 10.1016/j.actatropica.2024.107374
    Most studies on black flies focus on the taxonomy and ecology of their aquatic stages. Despite posing a public health threat, the adults remain poorly studied in many countries, including Malaysia. The present study represents the first investigation of the distribution of wild-caught black flies from various ecological landscapes and climatic conditions in Malaysia. CO2-baited Malaise traps were set randomly at 41 sampling sites across Peninsular Malaysia from 2020 to 2023. In total, 532 black flies belonging to 14 species of four subgenera were captured. To ensure taxonomic rigor, specimens were identified to species morphologically and molecularly. The subgenus Gomphostilbia was the most abundant (71.43 %), followed by Simulium (14.28 %) and Davieselleum and Nevermannia each representing 7.14 % of the total captures. These species represented 14.74 % of the total species recorded from Malaysia. The most frequently collected species were Simulium roslihashimi (24.39 %), followed by S. aureohirtum, S. vanluni, and S. (Gomphostilbia) sp. 1 with 7.32 % each. The highest relative abundance was found for S. vanluni (86.09 %) and S. roslihashimi (7.14 %). Most species were found at elevation below 300 m (78.57 %); fewer were at elevation higher than 1,000 m (21.43 %). Two principal components accounted for 85.3 % of the total intersite variance. Simulium roslihashimi was found at almost every site, with a maximum relative humidity of 90 %. Simulium aureohirtum and S. vanluni were found at sites with relative humidity up to 73 %, but S. aureohirtum was found at higher temperatures (31 °C) compared with S. roslihashimi (28 °C) and S. vanluni (29 °C). The present study establishes the groundwork for further studies of wild adults in Malaysia and identifies the need to use more traps over the range of seasons and environmental conditions, particularly near breeding sites.
  10. Kazim AR, Low VL, Houssaini J, Tappe D, Heo CC
    Acta Trop, 2024 Sep 06.
    PMID: 39245158 DOI: 10.1016/j.actatropica.2024.107383
    A Trypanosoma screening was conducted on 130 pools comprising 1,241 ticks, collected from 674 selected farm ruminants in Peninsular Malaysia. Of these, nine pools were tested positive for Trypanosoma. Subsequent BLAST searches revealed that the 18S rRNA gene sequences were closely related to Trypanosoma rhipicephalis isolate Chaco CB, with percentage similarities ranging from 95.56% to 99.84%. Phylogenetic analysis showed that three of the nine sequences formed a clade with Trypanosoma rhipicephalis. The remaining six Trypanosoma sequences formed a distinct clade, separate from T. rhipicephalis and other Trypanosoma species, with genetic distances of 4.34% and 4.33-4.58%, respectively. This study marks the first report of tick-associated Trypanosoma in Malaysia and underscores significant research gaps regarding trypanosome interactions with tick hosts in the region.
  11. Lee D, Kim K
    Acta Trop, 2024 Nov 26.
    PMID: 39608662 DOI: 10.1016/j.actatropica.2024.107481
    The coronavirus disease 2019 pandemic highlighted the necessity and limitations of scientific collaboration and equitable and effective international research partnerships. The spread of mosquito-borne diseases (MBDs) presents severe public health challenges, particularly in Southeast Asia. Addressing these threats requires establishing regional priorities, bridging research gaps, and strengthening long-term international collaboration. We propose a practical approach to multifaceted perspectives to enhance collaboration across Asia. This study examines MBD-related scientific publications from nine Southeast Asian countries between January 2017 and June 2024, utilizing bibliometric analysis and data visualization to identify research trends, research capacities, key institutions, and international collaborative partners. Thailand and Singapore led the dengue research, followed by Malaysia and Indonesia. Vietnam and the Philippines demonstrated moderate research capabilities, whereas Cambodia, Laos, and Myanmar had lower capacities. Relationships with high-income countries drove international collaboration, whereas intra-regional collaboration in Southeast Asia increased. Furthermore, we identified directions for cooperative opportunities between South Korea and other Southeast Asian countries by analyzing their relative research capacities for infectious MBDs. We propose a practical approach to bridge research-capacity gaps and strengthen collaboration between low- and middle-income countries. These findings provide fundamental information for developing future infectious-disease-response strategies and international-collaboration research partnerships and facilitate the implementation of effective global public health preparedness policies and evidence-based decision-making, such as knowledge-transfer and resource-sharing.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links