Displaying publications 161 - 180 of 389 in total

Abstract:
Sort:
  1. Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, et al.
    Front Cell Infect Microbiol, 2022;12:1082809.
    PMID: 36530420 DOI: 10.3389/fcimb.2022.1082809
    BACKGROUND: Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China.

    METHODS: A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied.

    RESULTS: 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%.

    CONCLUSIONS: Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.

  2. Ji H, Yi Q, Chen L, Wong L, Liu Y, Xu G, et al.
    Clin Chim Acta, 2020 Feb;501:147-153.
    PMID: 31678272 DOI: 10.1016/j.cca.2019.10.036
    Diabetic retinopathy (DR) is the leading cause of vision loss among older adults. The goal of this case-control study was to identify circulating miRNAs for the diagnosis of DR. The miRNeasy Serum/Plasma Kit was used to extract serum miRNAs. The μParaflo™ MicroRNA microarray was used to detect the expression levels of the miRNAs. The miRWalk algorithm was applied to predict the target genes of the miRNAs, which were further confirmed by the dual luciferase reporter gene system in HEK293T cells. A microarray was performed between 5 DR cases and 5 age-, sex-, body mass index-, and duration of diabetes-matched type 2 diabetic (T2DM) controls. The quantitative reverse transcription polymerase chain reaction technique was used to validate the differentially expressed circulating miRNAs in 45 DR cases and 45 well-matched controls. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the circulating miRNAs as diagnostic biomarkers for DR. Our microarray analysis screened out miR-2116-5p and miR-3197 as significantly up-regulated in DR cases compared with the controls. Furthermore, two miRNAs were validated in the 45 DR cases and 45 controls. The ROC analysis suggested that both miR-3197 and miR-2116-5p distinguished DR cases from controls. An additional dual-luciferase reporter gene assay confirmed that notch homolog 2 (NOTCH2) was the target gene of miR-2116-5p. Both miR-3197 and miR-2116-5p were identified as promising diagnostic biomarkers for DR. Future research is still needed to explore the molecular mechanisms of miR-3197 and miR-2116-5p in the pathogenesis of DR.
  3. Liu Y, Wang CW, Chen CB, Yu KH, Wu YJ, Choon SE, et al.
    Clin Immunol, 2023 Mar;248:109250.
    PMID: 36738816 DOI: 10.1016/j.clim.2023.109250
    BACKGROUNDS: HLA-B*58:01 allele was strongly associated with allopurinol induced severe cutaneous adverse drug reaction (SCAR). However, HLA-B genotype is not sufficient to predict the occurrence of allopurinol-induced SCAR.

    OBJECTIVE: To discover DNA methylation markers for allopurinol-induced SCAR which may improve the prediction accuracy of genetic testing.

    STUDY DESIGN: The study was designed as a retrospective case-control clinical study in multicenter hospitals across Taiwan, Mainland China, Malaysia and Canada. 125 cases of allopurinol-induced SCAR patients and 139 cases of allopurinol tolerant controls were enrolled in this study during 2005 to 2021.

    RESULTS: The results of genome-wide DNA methylation assay of 62 patients revealed that ITGB2 showed strong discriminative ability of allopurinol-induced SCAR in both HLA-B*58:01 positive and negative patients with AUC value of 0.9364 (95% CI 0.8682-1.000). In validation study, significant hypermethylation of ITGB2 were further validated in allopurinol-induced SCAR patients compared to tolerant controls, especially in those without HLA-B*58:01(AUC value of 0.8814 (95% CI 0.7121-1.000)). Additionally, the methylation levels of 2 sites on ITGB2 were associated with SCAR phenotypes. Combination of HLA-B*58:01 genotyping and ITGB2 methylation status could improve the prediction accuracy of allopurinol-induced SCAR with the AUC value up to 0.9387 (95% CI 0.9089-0.9684), while the AUC value of HLA-B*58:01 genotyping alone was 0.8557 (95% CI 0.8030-0.9083).

    CONCLUSIONS: Our study uncovers differentially methylated genes between allopurinol-induced SCAR patients and tolerant controls with positive or negative HLA-B*58:01 allele and provides the novel epigenetic marker that improves the prediction accuracy of genetic testing for prevention of allopurinol-induced SCAR.

  4. Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, et al.
    Microbiol Spectr, 2022 Aug 31;10(4):e0058522.
    PMID: 35862991 DOI: 10.1128/spectrum.00585-22
    Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
  5. Zhang X, Liang Y, Zheng K, Wang Z, Dong Y, Liu Y, et al.
    Front Microbiol, 2023;14:1161265.
    PMID: 37213492 DOI: 10.3389/fmicb.2023.1161265
    INTRODUCTION: Vibrio is an important bacterial genus containing many pathogenic species. Although more and more Vibrio phages were isolated, the genome, ecology and evolution of Vibrio phages and their roles in bacteriophage therapy, have not been fully revealed.

    METHODS: Novel Vibrio phage vB_ValR_NF infecting Vibrio alginolyticus was isolated from the coastal waters of Qingdao during the Ulva prolifera blooms, Characterization and genomic feature of phage vB_ValR_NF has been analysed using phage isolation, sequencing and metagenome method.

    RESULTS AND DISCUSSION: Phage vB_ValR_NF has a siphoviral morphology (icosahedral head 114±1 nm in diameter; a tail length of 231±1 nm), a short latent period (30 minutes) and a large burst size (113 virions per cell), and the thermal/pH stability study showed that phage vB_ValR_NF was highly tolerant to a range of pHs (4-12) and temperatures (-20 - 45 °C), respectively. Host range analysis suggests that phage vB_ValR_NF not only has a high inhibitory ability against the host strain V. alginolyticus, but also can infect 7 other Vibrio strains. In addition, the phage vB_ValR_NF has a double-stranded 44, 507 bp DNA genome, with 43.10 % GC content and 75 open reading frames. Three auxiliary metabolic genes associated with aldehyde dehydrogenase, serine/threonine protein phosphatase and calcineurin-like phosphoesterase were predicted, might help the host V. alginolyticus occupy the survival advantage, thus improving the survival chance of phage vB_ValR_NF under harsh conditions. This point can be supported by the higher abundance of phage vB_ValR_NF during the U. prolifera blooms than in other marine environments. Further phylogenetic and genomic analysis shows that the viral group represented by Vibrio phage vB_ValR_NF is different from other well-defined reference viruses, and can be classified into a new family, named Ruirongviridae. In general, as a new marine phage infecting V. alginolyticus, phage vB_ValR_NF provides basic information for further molecular research on phage-host interactions and evolution, and may unravel a novel insight into changes in the community structure of organisms during the U. prolifera blooms. At the same time, its high tolerance to extreme conditions and excellent bactericidal ability will become important reference factors when evaluating the potential of phage vB_ValR_NF in bacteriophage therapy in the future.

  6. Chen Y, Guo R, Liang Y, Luo L, Han Y, Wang H, et al.
    Virus Res, 2023 Sep;334:199183.
    PMID: 37499764 DOI: 10.1016/j.virusres.2023.199183
    Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.
  7. Wang H, Ren L, Liang Y, Zheng K, Guo R, Liu Y, et al.
    Microbiol Spectr, 2023 Aug 17;11(4):e0533522.
    PMID: 37272818 DOI: 10.1128/spectrum.05335-22
    Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.
  8. Eow SY, Gan WY, Jiang T, Loh SP, Lee LJ, Chin YS, et al.
    Front Nutr, 2022;9:994607.
    PMID: 36238465 DOI: 10.3389/fnut.2022.994607
    BACKGROUND: The microbiota plays a key role in early immunity maturation that affects infant health and is associated with the development of non-communicable diseases and allergies in later life.

    OBJECTIVE: The MYBIOTA is a prospective mother-infant cohort study in Malaysia aiming to determine the association between gut microbiota with infant health (temperament, gastrointestinal disorders, eczema, asthma, and developmental delays) in Selangor, Malaysia.

    METHODS: Pregnant mothers will be enrolled in their first trimester of pregnancy, and follow-ups will be done for infants during their first year of life. Maternal-infant biological samples (blood, feces, saliva, urine, and breast milk), anthropometric, dietary, and clinical information will be collected at different time points from early pregnancy to 12 months postpartum.

    DISCUSSION: This study could provide a better understanding of the colonization and development of the gut microbiome during early life and its impact on infant health.

    CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/, identifier NCT04919265.

  9. Zheng K, Dong Y, Liang Y, Liu Y, Zhang X, Zhang W, et al.
    Mar Life Sci Technol, 2023 May;5(2):286-288.
    PMID: 37275540 DOI: 10.1007/s42995-023-00166-1
    [This corrects the article DOI: 10.1007/s42995-022-00160-z.].
  10. Zheng K, Dong Y, Liang Y, Liu Y, Zhang X, Zhang W, et al.
    Mar Life Sci Technol, 2023 May;5(2):271-285.
    PMID: 37275543 DOI: 10.1007/s42995-022-00160-z
    Pseudoalteromonas, with a ubiquitous distribution, is one of the most abundant marine bacterial genera. It is especially abundant in the deep sea and polar seas, where it has been found to have a broad metabolic capacity and unique co-existence strategies with other organisms. However, only a few Pseudoalteromonas phages have so far been isolated and investigated and their genomic diversity and distribution patterns are still unclear. Here, the genomes, taxonomic features and distribution patterns of Pseudoalteromonas phages are systematically analyzed, based on the microbial and viral genomes and metagenome datasets. A total of 143 complete or nearly complete Pseudoalteromonas-associated phage genomes (PSAPGs) were identified, including 34 Pseudoalteromonas phage isolates, 24 proviruses, and 85 Pseudoalteromonas-associated uncultured viral genomes (UViGs); these were assigned to 47 viral clusters at the genus level. Many integrated proviruses (n = 24) and filamentous phages were detected (n = 32), suggesting the prevalence of viral lysogenic life cycle in Pseudoalteromonas. PSAPGs encoded 66 types of 249 potential auxiliary metabolic genes (AMGs) relating to peptidases and nucleotide metabolism. They may also participate in marine biogeochemical cycles through the manipulation of the metabolism of their hosts, especially in the phosphorus and sulfur cycles. Siphoviral and filamentous PSAPGs were the predominant viral lineages found in polar areas, while some myoviral and siphoviral PSAPGs encoding transposase were more abundant in the deep sea. This study has expanded our understanding of the taxonomy, phylogenetic and ecological scope of marine Pseudoalteromonas phages and deepens our knowledge of viral impacts on Pseudoalteromonas. It will provide a baseline for the study of interactions between phages and Pseudoalteromonas in the ocean.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42995-022-00160-z.

  11. Su Y, Zhang W, Liang Y, Wang H, Liu Y, Zheng K, et al.
    Microbiol Spectr, 2023 Sep 20;11(5):e0191223.
    PMID: 37728551 DOI: 10.1128/spectrum.01912-23
    Viruses play crucial roles in the ecosystem by modulating the host community structure, mediating biogeochemical cycles, and compensating for the metabolism of host cells. Mariana Trench, the world's deepest hadal habitat, harbors a variety of unique microorganisms that have adapted to its extreme conditions of low temperatures, high pressure, and nutrient scarcity. However, our knowledge about isolated hadal phage strains in the hadal trench is still limited. This study reported the discovery of a temperate phage, vB_HmeY_H4907, infecting Halomonas meridiana H4907, isolated from surface sediment from the Mariana Trench at a depth of 8,900 m. To our best knowledge, it is the deepest isolated siphovirus from the ocean. Its 40,452 bp linear dsDNA genome has 57.64% GC content and 55 open reading frames, and it is highly homologous to its host. Phylogenetic analysis and average nucleotide sequence identification reveal that vB_HmeY_H4907 is separated from the isolated phages and represents a new family, Suviridae, with eight predicted proviruses and six uncultured viral genomes. They are widely distributed in the ocean, suggesting a prevalence of this viral family in the deep sea. These findings expand our understanding of the phylogenetic diversity and genomic features of hadal lysogenic phages, provide essential information for further studies of phage-host interactions and evolution, and may reveal new insights into the lysogenic lifestyles of viruses inhabiting the hadal ocean. IMPORTANCE Halomonas phage vB_HmeY_H4907 is the deepest isolated siphovirus from the ocean, and it represents a novel abundant viral family in the ocean. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral family, namely, Suviridae.
  12. Liu Y, Zhu C, Liang Y, McMinn A, Zheng K, Wang Z, et al.
    Int Microbiol, 2024 Jan 08.
    PMID: 38190086 DOI: 10.1007/s10123-023-00476-5
    Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.
  13. Zeng QY, Chen R, Xiao ZY, Huang SB, Liu Y, Xu JC, et al.
    J Rheumatol, 2004 Dec;31(12):2439-43.
    PMID: 15570648
    To determine whether the previously noted low prevalence of knee pain (KP) and lumbar pain (LP) in rural southern China compared with the high prevalence observed in North China was also true in a southern urban population.
  14. Liu A, He M, Liu C, Ye Z, Tan CP, Liu Y, et al.
    J Agric Food Chem, 2024 Mar 27;72(12):6118-6132.
    PMID: 38477232 DOI: 10.1021/acs.jafc.3c08697
    Cardiovascular diseases are caused by hypercholesterolemia. Astaxanthin (AST) has been reported to exhibit antioxidant and anti-inflammatory properties. However, its bioavailability is poor because of low solubility and instability. In order to improve the bioavailability of AST, we developed an intestinal-responsive composite carrier termed as "liposomes in micropheres" incorporating N-succinyl-chitosan (NSC)-poly(ethylene glycol) (PEG) liposomes that functionalized by neonatal Fc receptors (FcRn) into hydrogels of sodium alginate (SA) and carboxymethyl chitosan (CMCS). In the AST NSC/HSA-PEG liposomes@SA/CMCS microspheres, the AST's encapsulation efficiency (EE) was 96.26% (w/w) and its loading capacity (LC) was 6.47% (w/w). AST NSC/HSA-PEG liposomes had stability in the gastric conditions and achieved long-term release of AST in intestinal conditions. Then, AST NSC/HSA-PEG liposomes@SA/CMCS bind to intestinal epithelial cell targets by the neonatal Fc receptor. In vitro permeation studies show that there was a 4-fold increase of AST NSC/HSA-PEG liposomes@SA/CMCS in AST permeation across the intestinal epithelium. Subsequent in vivo experiments demonstrated that the composite carrier exhibited a remarkable mucoadhesive capacity, allowing for extended intestinal retention of up to 12 h, and it displayed deep penetration through the mucus layer, efficiently entering the intestinal villi epithelial cells, and enhancing the absorption of AST and its bioavailability in vivo. And oral administration of AST NSC/HSA-PEG liposomes@SA/CMCS could effectively prevent hypercholesterolemia caused by a high-fat, high-cholesterol diet (HFHCD). These advancements highlight the potential of NSC/HSA-PEG liposomes@SA/CMCS composite carriers for targeted and oral uptake of hydrophobic bioactives.
  15. Xu Y, Zhang X, Fu Z, Dong Y, Yu Y, Liu Y, et al.
    Stem Cells Dev, 2024 Nov;33(21-22):616-629.
    PMID: 39155804 DOI: 10.1089/scd.2024.0072
    Heart failure (HF) is still the main cause of mortality worldwide. This study investigated the characteristics of human pericardial fluid-derived cells (hPFCs) and their effects in treating doxorubicin (DOX)-induced HF rats through intrapericardial injection. hPFCs were isolated from patients who underwent heart transplantation (N = 5). These cells that primarily expressed SCA-1, NANOG, and mesenchymal markers, CD90, CD105, and CD73, were able to form adipocytes, osteoblasts, and cardiomyocytes in vitro. Passage 3 hPFCs (2.5 × 105 cells/heart) were injected into the pericardial cavity of the DOX-injured rat hearts, significantly improving cardiac functions after 4 weeks. The tracked and engrafted red fluorescent protein-tagged hPFCs coexpressed cardiac troponin T and connexin 43 after 4 weeks in the host myocardium. This observation was also coupled with a significant reduction in cardiac fibrosis following hPFC treatment (P < 0.0001 vs. untreated). The elevated inflammatory cytokines interleukin (IL)-6, IL-10, and tumor necrosis factor-α in the DOX-treated hearts were found to be significantly reduced (P < 0.001 vs. untreated), while the regional proangiogenic vascular endothelial growth factor A (VEGFA) level was increased in the hPFC-treated group after 4 weeks (P < 0.05 vs. untreated). hPFCs possess stem cell characteristics and can improve the cardiac functions of DOX-induced HF rats after 4 weeks through pericardial administration. The improvements were attributed to a significant reduction in cardiac fibrosis, inflammation, and elevated regional proangiogenesis factor VEGFA, with evidence of cellular engraftment and differentiation in the host myocardium.
  16. Tao X, Jin X, Gao S, Yi X, Liu Y, Rockett TBO, et al.
    ACS Photonics, 2024 Nov 20;11(11):4846-4853.
    PMID: 39584037 DOI: 10.1021/acsphotonics.4c01343
    The presence of large bismuth (Bi) atoms has been shown to increase the spin-orbit splitting energy in bulk GaAsBi, reducing the hole ionization coefficient (β) and thereby reducing the excess noise seen in avalanche photodiodes. In this study, we show that even very thin layers of GaAsBi introduced as quantum wells (QWs) in a GaAs matrix exhibit a significant reduction of β while leaving the electron ionization coefficient, α, largely unchanged. The optical and avalanche multiplication properties of a series of GaAsBi/GaAs multiple quantum well (MQW) p-i-n structures with nominally 5 nm thick, 4.4% Bi GaAsBi QWs, varying from 5 to 63 periods and corresponding barrier widths of 101 to 4 nm were investigated. From photoluminescence, ω-2θ X-ray diffraction, and cross section transmission electron microscopy measurements, the material was found to be of high quality despite the strain introduced by the Bi in all except the samples with 54 and 63 QW periods. Photomultiplication measurements undertaken with different wavelengths showed that α in these MQW structures did not change appreciably with the number of QWs; however, β decreased significantly, especially at lower values, the noise factor, F, is reduced by 58% to 3.5 at a multiplication of 10, compared to a similar thickness bulk GaAs structure without any Bi. This result suggests that Bi-containing QWs could be introduced into the avalanching regions of APDs as a way of reducing their excess noise.
  17. Ngeow YF, Suwanjutha S, Chantarojanasriri T, Wang F, Saniel M, Alejandria M, et al.
    Int J Infect Dis, 2005 May;9(3):144-53.
    PMID: 15840455
    In many parts of Asia, the inaccessibility and high cost of diagnostic tests have hampered the study of community-acquired pneumonia (CAP) caused by atypical respiratory pathogens.
  18. Liu Y, Zheng K, Liu B, Liang Y, You S, Zhang W, et al.
    Front Microbiol, 2021;12:726074.
    PMID: 34512604 DOI: 10.3389/fmicb.2021.726074
    Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from -20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links