Displaying publications 141 - 160 of 3994 in total

Abstract:
Sort:
  1. Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS
    Biotechnol Adv, 2020 12 30;47:107684.
    PMID: 33387639 DOI: 10.1016/j.biotechadv.2020.107684
    The coexistence of algae and bacteria in nature dates back to the very early stages when life came into existence. The interaction between algae and bacteria plays an important role in the planet ecology, cycling nutrients, and feeding higher trophic levels, and have been evolving ever since. The emerging concept of algal-bacterial consortia is gaining attention, much towards environmental management and protection. Studies have shown that algal-bacterial synergy does not only promote carbon capture in wastewater bioremediation but also consequently produces biofuels from algal-bacterial biomass. This review has evaluated the optimistic prospects of algal-bacterial consortia in environmental remediation, biorefinery, carbon sequestration as well as its contribution to the production of high-value compounds. In addition, algal-bacterial consortia offer great potential in bloom control, dye removal, agricultural biofertilizers, and bioplastics production. This work also emphasizes the advancement of algal-bacterial biotechnology in environmental management through the incorporation of Industry Revolution 4.0 technologies. The challenges include its pathway to greener industry, competition with other food additive sources, societal acceptance, cost feasibility, environmental trade-off, safety and compatibility. Thus, there is a need for further in-depth research to ensure the environmental sustainability and feasibility of algal-bacterial consortia to meet numerous current and future needs of society in the long run.
    Matched MeSH terms: Waste Water*
  2. Kurniawan TA, Mengting Z, Fu D, Yeap SK, Othman MHD, Avtar R, et al.
    J Environ Manage, 2020 Sep 15;270:110871.
    PMID: 32721315 DOI: 10.1016/j.jenvman.2020.110871
    Methylene blue is a refractory pollutant commonly present in textile wastewater. This study tests the feasibility of TiO2/graphene oxide (GO) composite in enhancing photocatalytic degradation of MB in synthetic wastewater with respect to scientific and engineering aspects. To enhance its removal, we vary the composition of the composite based on the TiO2 weight. Under UV-vis irradiation, the effects of photocatalyst's dose, pH, and reaction time on MB removal by the composites are evaluated under optimum conditions, while any changes in their physico-chemical properties before and after treatment are analyzed by using TEM, SEM, XRD, FTIR and BET. The photodegradation pathways of the target pollutant by the composite and its removal mechanisms are also elaborated. It is found that the same composite with a 1:2 wt ratio of GO/TiO2 has the largest surface area of 104.51 m2/g. Under optimum reactions (0.2 g/L of dose, pH 10, and 5 mg/L of pollutant's concentration), an almost complete MB removal could be attained within 4 h. This result is higher than that of the TiO2 alone (30%) under the same conditions. Since the treated effluents could meet the strict discharge standard limit of ≤0.2 μg/L set by China's regulation, subsequent biological treatments are unnecessary for completing biodegradation of remaining oxidation by-products in the wastewater effluents.
    Matched MeSH terms: Waste Water*
  3. Chang E, Lim JA, Low CL, Kassim A
    J Nephrol, 2021 02;34(1):97-104.
    PMID: 33394342 DOI: 10.1007/s40620-020-00903-0
    BACKGROUND: Water crisis is becoming a threat to the well-being of the human population worldwide and use of water for healthcare contributes substantially to this resource depletion. Hemodialysis consumes large quantities of water. A huge volume of high purity dialysis water is required to safely perform dialysis treatment. In this process, up to 60-70% of source water is discarded. Many strategies have been suggested to promote green dialysis, and these include reuse of water, however, very few dialysis facilities have taken the preliminary steps to employ it.

    METHODS: We share our experience in a developing country on an innovative reject-water reuse program combining aquaculture, hydroponic and horticulture activities. This is by far the first report on a "green dialysis" project involving aquaponics that reuse dialysis reverse osmosis (RO) reject water.

    RESULTS: Our expereince suggests that reject water can be reused to promote water conservation with encouraging results. It provides a good and biosecure environment for fish breeding and vegetable farming . This project promotes a reduction in carbon footprint, a reduction in water waste, a sustainable organic food source, may lead to income generation, and provides a shared purpose and sense of pride among staff and dialysis patients.

    CONCLUSIONS: Encompassing "environmental protection" practices into a hemodialysis unit can be done with relatively simple and practical steps.

    Matched MeSH terms: Water*
  4. Saleem MA, Yasir Siddique M, Nazar MF, Khan SU, Ahmad A, Khan R, et al.
    Langmuir, 2020 07 14;36(27):7908-7915.
    PMID: 32551692 DOI: 10.1021/acs.langmuir.0c01016
    Nanostructures play an important role in targeting sparingly water-soluble drugs to specific sites. Because of the structural flexibility and stability, the use of template microemulsions (μEs) can produce functional nanopharmaceuticals of different sizes, shapes, and chemical properties. In this article, we report a new volatile oil-in-water (o/w) μE formulation comprising ethyl acetate/ethanol/brij-35/water to obtain the highly water-dispersible nanoparticles of an antihyperlipidemic agent, ezetimibe (EZM-NPs), to enhance its dissolution profile. A pseudoternary phase diagram was delineated in a specified brij-35/ethanol ratio (1:1) to describe the transparent, optically isotropic domain of the as-formulated μE. The water-dilutable μE formulation, comprising an optimum composition of ethyl acetate (18.0%), ethanol (25.0%), brij-35 (25.0%), and water (32.0%), showed a good dissolvability of EZM around 4.8 wt % at pH 5.2. Electron micrographs showed a fine monomodal collection of EZM-loaded μE droplets (∼45 nm) that did not coalesce even after lyophilization, forming small spherical EZM-NPs (∼60 nm). However, the maturity of nanodrug droplets observed through dynamic light scattering suggests the affinity of EZM to the nonpolar microenvironment, which was further supported through peak-to-peak correlation of infrared analysis and fluorescence measurements. Moreover, the release profile of the as-obtained EZM-nanopowder increased significantly >98% in 30 min, which indicates that a reduced drug concentration will be needed for capsules or tablets in the future and can be simply incorporated into the multidosage formulation of EZM.
    Matched MeSH terms: Water*
  5. Mehdizadeh H, Jia X, Mo KH, Ling TC
    Environ Pollut, 2021 Jul 01;280:116914.
    PMID: 33774540 DOI: 10.1016/j.envpol.2021.116914
    Recently, the use of accelerated carbonation curing has attracted wide attention as a promising method to reduce carbon dioxide (CO2) emission and improve the mechanical properties of cement-based materials. However, the diffusion mechanism of CO2 in the matrix and the content of hydration products are the key factors that restrict the carbonation reaction rate. To understand the combined behavior of hydration and carbonation reactions, this paper investigates the influence of cement hydration induced by water-to-cement ratio (w/c) (ranging from 0.25 to 0.45) on microstructure and microhardness properties of cement paste. The experimental results demonstrated that carbonation only occurred at the surface layer of cement paste samples and carbonation efficiency was significantly influenced by greater hydration due to higher w/c. The carbonation depth of the sample with 0.45 w/c was about 6 times higher than that of sample with 0.25 w/c after 28 days of CO2 curing. XRD results revealed that calcite-type calcium carbonate is the main carbonation product and consumption of clinker phases (C2S and C3S) during the hydration enhanced the calcite precipitation in the pores of the surface layer. According to FTIR, with increasing w/c, the position of Si-O-Si stretching bond of the carbonated surface changed from Q2 to Q3, confirming the formation of amorphous silica-rich gel, along with the appearance of CO32- bonds related to calcite. In overall, the micro-mechanical analysis in this study showed that the carbonation significantly improved the surface microhardness of cement paste samples, while the refinement of capillary pores due to carbonation also decreased the negative impact of large pores formed in the matrix of cement paste prepared with high w/c.
    Matched MeSH terms: Water*
  6. Bao Y, Oh WD, Lim TT, Wang R, Webster RD, Hu X
    Water Res, 2019 03 15;151:64-74.
    PMID: 30594091 DOI: 10.1016/j.watres.2018.12.007
    In this work, nano-bimetallic Co/Fe oxides with different stoichiometric Co/Fe ratios were prepared using a novel one-step solution combustion method. The nano-bimetallic Co/Fe oxides were used for sulfamethoxazole (SMX) degradation via peroxymonosulfate (PMS) activation. The stoichiometric efficiencies of the as-prepared nano-bimetallic catalysts were calculated and compared for the first time. The radical generation was identified by electron paramagnetic resonance (EPR) as well as chemical quenching experiments, in which different scavengers were used and compared. The catalytic PMS activation mechanism in the presence of catalyst was examined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results showed that besides SO4•- and •OH, •OOH was also detected in the PMS/CoFeO2.5 system. Meanwhile, in addition to the previously proposed radical oxidation pathway, the results showed that SMX degradation also involved a non-radical oxidation, which could be verified by the degradation experiment without catalyst as well as the detection of 1O2. In the PMS activation process, cobalt functioned as the active site on CoFeO2.5 while Fe oxide functioned as the adsorption site. The electron transfer mechanism was proposed based on the XPS and metal leaching results. Additionally, via the detection of transformation products, different SMX transformation pathways involving nitration, hydroxylation and hydrolysis in the PMS/CoFeO2.5 system were proposed.
    Matched MeSH terms: Water Pollutants, Chemical*
  7. Chan JS, Poh PE, Ismadi MP, Yeo LY, Tan MK
    Water Res, 2020 Feb 01;169:115187.
    PMID: 31671294 DOI: 10.1016/j.watres.2019.115187
    There is a pressing need for efficient biological treatment systems for the removal of organic compounds in greywater given the rapid increase in household wastewater produced as a consequence of rapid urbanisation. Moreover, proper treatment of greywater allows its reuse that can significantly reduce the demand for freshwater supplies. Herein, we demonstrate the possibility of enhancing the removal efficiency of solid contaminants from greywater using MHz-order surface acoustic waves (SAWs). A key distinction of the use of these high frequency surface acoustic waves, compared to previous work on its lower frequency (kHz order) bulk ultrasound counterpart for wastewater treatment, is the absence of cavitation, which can inflict considerable damage on bacteria, thus limiting the intensity and duration, and hence the efficiency enhancement, associated with the acoustic exposure. In particular, we show that up to fivefold improvement in the removal efficiency can be obtained, primarily due to the ability of the acoustic pressure field in homogenizing and reducing the size of bacterial clusters in the sample, therefore providing a larger surface area that promotes greater bacteria digestion. Alternatively, the SAW exposure allows the reduction in the treatment duration to achieve a given level of removal efficiency, thus facilitating higher treatment rates and hence processing throughput. Given the low-cost of the miniature chipscale platform, these promising results highlight its possibility for portable greywater treatment for domestic use or for large-scale industrial wastewater processing through massive parallelization.
    Matched MeSH terms: Waste Water*
  8. Abunama T, Ansari M, Awolusi OO, Gani KM, Kumari S, Bux F
    J Environ Manage, 2021 Sep 01;293:112862.
    PMID: 34049159 DOI: 10.1016/j.jenvman.2021.112862
    To ensure the safe discharge of treated wastewater to the environment, continuous efforts are vital to enhance the modelling accuracy of wastewater treatment plants (WWTPs) through utilizing state-of-art techniques and algorithms. The integration of metaheuristic modern optimization algorithms that are natlurally inspired with the Fussy Inference Systems (FIS) to improve the modelling performance is a promising and mathematically suitable approach. This study integrates four population-based algorithms, namely: Particle swarm optimization (PSO), Genetic algorithm (GA), Hybrid GA-PSO, and Mutating invasive weed optimization (M-IWO) with FIS system. A full-scale WWTP in South Africa (SA) was selected to assess the validity of the proposed algorithms, where six wastewater effluent parameters were modeled, i.e., Alkalinity (ALK), Sulphate (SLP), Phosphate (PHS), Total Kjeldahl Nitrogen (TKN), Total Suspended Solids (TSS), and Chemical Oxygen Demand (COD). The results from this study showed that the hybrid PSO-GA algorithm outperforms the PSO and GA algorithms when used individually, in modelling all wastewater effluent parameters. PSO performed better for SLP and TKN compared to GA, while the M-IWO algorithm failed to provide an acceptable modelling convergence for all the studied parameters. However, three out of four algorithms applied in this study proven beneficial to be optimized in enhancing the modelling accuracy of wastewater quality parameters.
    Matched MeSH terms: Waste Water*
  9. Omar WM
    Trop Life Sci Res, 2010 Dec;21(2):51-67.
    PMID: 24575199
    Algal communities possess many attributes as biological indicators of spatial and temporal environmental changes. Algal parameters, especially the community structural and functional variables that have been used in biological monitoring programs, are highlighted in this document. Biological indicators like algae have only recently been included in water quality assessments in some areas of Malaysia. The use of algal parameters in identifying various types of water degradation is essential and complementary to other environmental indicators.
    Matched MeSH terms: Water; Water Quality
  10. Wan Maznah Wan Omar
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Algal communities possess many attributes as biological indicators of spatial and temporal environmental changes. Algal parameters, especially the community structural and functional variables that have been used in biological monitoring programs, are highlighted in this document. Biological indicators like algae have only recently been included in water quality assessments in some areas of Malaysia. The use of algal parameters in identifying various types of water degradation is essential and complementary to other environmental indicators.
    Matched MeSH terms: Water; Water Quality
  11. S E, G A, A F I, P S G, Y LT
    Environ Res, 2021 06;197:111177.
    PMID: 33864792 DOI: 10.1016/j.envres.2021.111177
    Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
    Matched MeSH terms: Water Purification*
  12. Tan ML, Gassman PW, Liang J, Haywood JM
    Sci Total Environ, 2021 Nov 15;795:148915.
    PMID: 34328938 DOI: 10.1016/j.scitotenv.2021.148915
    Alternative climate products, such as gauge-based gridded data, ground-based weather radar, satellite precipitation and climate reanalysis products, are being increasingly applied for hydrological modelling. This review aims to summarize the studies that have evaluated alternative climate products within Soil and Water Assessment Tool (SWAT) applications and to propose future research directions, primarily for modelers who wish to study limited gauge, ungauged or transnational river basins. A total of 126 articles have been identified since 2004, the majority of which have been published within the last five years. About 58% of the studies were conducted in Asia, mostly in China and India, while another 14% were reported for United States studies. CFSR and TRMM are the most popular applied products in SWAT modelling, followed by PERSIANN, CMADS, APHRODITE, CHIRPS and NEXRAD. Generally, the performance of climate products is region-dependent; e.g., CFSR typically performs well in the United States and South America, but performs more poorly for Asia, Africa and mountainous basin conditions, as compared to other products. In contrast, the CMADS, TRMM, APRHODITE and NEXRAD have shown the strongest capability for supporting SWAT modelling in these regions. However, most of the evaluated products contain only precipitation input; therefore, merging reliable precipitation with CFSR-temperature is recommended for hydro-climatic modelling. Future research directions include: (1) examination of optimal combinations; e.g. CHIRPS-precipitation and CFSR-temperature, for simulating streamflow in different types of river basins; (2) development of a standardized validation scheme which incorporates the commonly accepted products, statistical approaches and temperature variables; (3) further evaluation of existing climate data products to accurately capture extreme events, pattern and indices as well as WGEN statistics; (4) improvement of climate data in terms of averaging approach, bias correction and additional factors or indices integration; and (5) bias correction of CMIP6 climate projections using the optimal climate data combinations.
    Matched MeSH terms: Water*
  13. Jia Y, Zheng F, Maier HR, Ostfeld A, Creaco E, Savic D, et al.
    Water Res, 2021 Sep 01;202:117419.
    PMID: 34274902 DOI: 10.1016/j.watres.2021.117419
    Urban sewer networks (SNs) are increasingly facing water quality issues as a result of many challenges, such as population growth, urbanization and climate change. A promising way to addressing these issues is by developing and using water quality models. Many of these models have been developed in recent years to facilitate the management of SNs. Given the proliferation of different water quality models and the promise they have shown, it is timely to assess the state-of-the-art in this field, to identify potential challenges and suggest future research directions. In this review, model types, modeled quality parameters, modeling purpose, data availability, type of case studies and model performance evaluation are critically analyzed and discussed based on a review of 110 papers published between 2010 and 2019. The review identified that applications of empirical and kinetic models dominate those of data-driven models for addressing water quality issues. The majority of models are developed for prediction and process understanding using experimental or field sampled data. While many models have been applied to real problems, the corresponding prediction accuracies are overall moderate or, in some cases, low, especially when dealing with larger SNs. The review also identified the most common issues associated with water quality modeling of SNs and based on these proposed several future research directions. These include the identification of appropriate data resolutions for the development of different SN models, the need and opportunity to develop hybrid SN models and the improvement of SN model transferability.
    Matched MeSH terms: Water Quality*
  14. Zhang C, Hasunuma T, Shiung Lam S, Kondo A, Ho SH
    Bioresour Technol, 2021 Nov;340:125638.
    PMID: 34358989 DOI: 10.1016/j.biortech.2021.125638
    Mariculture wastewater has drawn growing attention due to associated threats for coastal environment. However, most biological techniques exhibit unfavorable performance due to saline inhibition. Furthermore, only NaCl was used in most studies causing clumsy evaluation, undermining the potential of microalgal mariculture wastewater treatment. Herein, various concentrations of NaCl and sea salt are comprehensively examined and compared for their efficiencies of mariculture wastewater treatment and biodiesel conversion. The results indicate sea salt is a better trigger for treating wastewater (nearly 100% total nitrogen and total phosphorus removal) and producing high-quality biodiesel (330 mg/L•d). Structure equation model (SEM) further demonstrates the correlation of wastewater treatment performance and microalgal status is gradually weakened with increment of sea salt concentrations. Furthermore, metabolic analysis reveals enhanced photosynthesis might be the pivotal motivator for preferable outcomes under sea salt stimulation. This study provides new insights into microalgae-based approach integrating mariculture wastewater treatment and biodiesel production.
    Matched MeSH terms: Water Purification*
  15. Selambakkannu, Sarala, Bakar, Khomsaton Abu, Ming, Ting Teo, Jamaliah Sharif
    MyJurnal
    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water were done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation.
    Matched MeSH terms: Water; Waste Water
  16. Leila Khodapanah, Wan Nor Azmin Sulaiman
    MyJurnal
    Eshtehard aquifer located in southwest of Tehran province, Iran, provides a large amount of water requirement for inhabitants of Eshtehard district. Monitoring and analyzing of groundwater quality are important for protecting groundwater as sustainable water resource. One of the most advanced techniques for groundwater quality interpolation and mapping is geostatistics methods. The purposes of this study are (1) to investigate major ions concentration and their relative abundance to provide an overview of present groundwater chemistry and (2) to map the groundwater quality in the study area using geostatistics techniques. In this investigation, ArcGIS 9.2 was used for predicting spatial distribution of some groundwater characteristics such as: Chloride, Sulfate, pH, and Conductivity. These methods are applied for data from 44 wells within the study area. The final maps show that the south parts of the Eshtehard aquifer have suitable groundwater quality for human consumption and in general, the groundwater quality degrades south to north and west to east of the Eshtehard plain along the groundwater flow path.
    Matched MeSH terms: Water Wells; Water Resources
  17. Ho, C. L. I., Choo, B. Q.
    MyJurnal
    In this paper, stormwater runoff from a residential catchment located in Miri, Sarawak, was characterized to determine the pollutant concentrations and loading. The observed average event mean concentrations were 116 mg/L for TSS, 115 mg/L for COD, 1.5 mg/L for NH3-N, and 0.23 mg/L for Pb. Based on Interim National Water Quality Standards (INWQS) for Malaysia, the average event mean concentration, EMC value for TSS exceeded class II (50 mg/L), exceeded class V (>100 mg/L) for COD, and exceeded class III (0.9 mg/L) for NH3-N. All four water quality parameters exhibited first flush characteristic but to varying magnitude which was influenced by the storm characteristics.
    Matched MeSH terms: Water Movements; Water Quality
  18. Al-Hassoun, Saleh A., Mohammad, Thamer Ahmed
    MyJurnal
    Groundwater is the main source of water in the Kingdom of Saudi Arabia (KSA). A larger part of groundwater is founded in alluvial (unconfined) aquifers. Prediction of water table elevations in
    unconfined aquifers is very useful in water resources planning and management. During the last two
    decades, many aquifers in different regions of the KSA experienced significant groundwater decline.
    The declines in these aquifers raised concerns over the quantity and quality of groundwater, as well
    as concerns over the planning and management policies used in KSA. The main objective of this study was to predict water table fluctuations and to estimate the annual change in water table at an alluvial aquifer at wadi Hada Al Sham near Makkah, KSA. The methodology was achieved using numerical groundwater model (MODFLOW). The model was calibrated and then used to predict water table elevations due to pumping for a period of 5 years. The output of the model was found to be in agreement with the previous records. Moreover, the simulation results also show reasonable declination of water table elevations in the study area during the study period.
    Matched MeSH terms: Water; Groundwater; Water Resources
  19. Khalid AAH, Yaakob Z, Abdullah SRS, Takriff MS
    Bioresour Technol, 2018 Jan;247:930-939.
    PMID: 30060432 DOI: 10.1016/j.biortech.2017.09.195
    This study investigated acclimation ability of native Chlorella sorokiniana (CS-N) and commercial Chlorella sorokiniana (CS-C) in palm oil mill effluent (POME), their metabolic profile and feasibility of effluent recycling for dilution purpose. Maximum specific growth rate, µmax and lag time, λ of the microalgae were evaluated. Result shows both strains produced comparable growth in POME, with µmax of 0.31 day-1 and 0.30 day-1 respectively, albeit longer λ by the CS-C. However, three cycles of acclimation was able to reduce λ from eight days to two days for CS-C. Metabolic profiling using principal component analysis (PCA) shows clear cluster of acclimatized strains to suggest better stress tolerance of CS-N. Finally, a remarkable µmax of 0.57 day-1 without lag phase was achieved using acclimatized CS-N in 40% POME concentration. Acclimation has successfully shortened the λ and dilution with final effluent was proved to be feasible for further improvement of the microalgae growth.
    Matched MeSH terms: Waste Water*
  20. Aziz A, Agamuthu P, Fauziah SH
    Waste Manag Res, 2018 Oct;36(10):975-984.
    PMID: 30058954 DOI: 10.1177/0734242X18790360
    Landfill leachate contain persistent organic pollutants (POPs), namely, bisphenol A (BPA) and 2,4-Di-tert-butylphenol, which exceed the permissible limits. Thus, such landfill leachate must be treated before it is released into natural water courses. This article reports on investigations about the removal efficiency of POPs such as BPA and 2,4-Di-tert-butylphenol from leachate using locust bean gum (LBG) in comparison with alum. The vital experimental variables (pH, coagulant dosage and stirring speed) were optimised by applying response surface methodology equipped with the Box-Behnken design to reduce the POPs from leachate. An empirical quadratic polynomial model could accurately model the surface response with R2 values of 0.928 and 0.954 to reduce BPA and 2,4-Di-tert-butylphenol, respectively. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were performed on treated flocs for further understanding. FTIR analysis revealed that the bridging of pollutant particles could be due to the explicit adsorption and bridging via hydrogen bonding of a coagulation mechanism. SEM micrographs indicated that the flocs produced by LBG have a rough cloudy surface and numerous micro-pores compared with alum, which enabled the capture and removal of POPs from leachate. Results showed that the reduction efficiencies for BPA and 2,4-Di-tert-butylphenol at pH 7.5 were 76% and 84% at LBG dosage of 500 mg·L-1 and 400 mg·L-1, respectively. Coagulant dosage and pH variation have a significant effect on POPs reduction in leachate. Coagulation/flocculation using LBG could be applied for POPs reduction in leachate as a pre-treatment prior to advanced treatments.
    Matched MeSH terms: Water Pollutants, Chemical*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links