Displaying publications 141 - 160 of 9224 in total

Abstract:
Sort:
  1. Khosravi Y, Bunte RM, Chiow KH, Tan TL, Wong WY, Poh QH, et al.
    Gut Microbes, 2016;7(1):48-53.
    PMID: 26939851 DOI: 10.1080/19490976.2015.1119990
    Helicobacter pylori have been shown to influence physiological regulation of metabolic hormones involved in food intake, energy expenditure and body mass. It has been proposed that inducing H. pylori-induced gastric atrophy damages hormone-producing endocrine cells localized in gastric mucosal layers and therefore alter their concentrations. In a recent study, we provided additional proof in mice under controlled conditions that H. pylori and gut microbiota indeed affects circulating metabolic gut hormones and energy homeostasis. In this addendum, we presented data from follow-up investigations that demonstrated H. pylori and gut microbiota-associated modulation of metabolic gut hormones was independent and precedes H. pylori-induced histopathological changes in the gut of H. pylori-infected mice. Thus, H. pylori-associated argumentation of energy homeostasis is not caused by injury to endocrine cells in gastric mucosa.
    Matched MeSH terms: Energy Metabolism*; Gastric Mucosa/metabolism*; Insulin/metabolism; Helicobacter pylori/metabolism*; Peptide YY/metabolism; Leptin/metabolism; Ghrelin/metabolism
  2. Pertiwi AK, Kwan TK, Gower DB
    J Steroid Biochem Mol Biol, 2002 Aug;81(4-5):363-7.
    PMID: 12361726
    The intracellular movements of pregnenolone in rat testes were investigated. Whole testes were incubated in the presence or absence of pregnenolone (2.5mM) in the medium for 120 min (in some studies 30, 60, and 90 min). The testes were homogenised, subcellular fractions prepared and analysed in quadruplicate for steroid content by gas chromatography-mass spectrometry with selected ion monitoring. Quantification of pregnenolone and 11 of its metabolites, obtained from non-incubated whole testes, provided values for endogenous amounts. Pregnenolone was the only steroid of quantitative importance found initially in the mitochondrial fraction but was subsequently found in the microsomal fraction, where metabolism occurred. Identification and quantification of metabolites indicated that both classical pathways for testosterone production were operating, with the 4-en-3-oxosteroid pathway predominating. By 120 min, virtually all pregnenolone metabolites, including pregnenolone itself, were found in the cytosol, consistent with an overall movement from mitochondria to endoplasmic reticulum to cytosol.
    Matched MeSH terms: Cytosol/metabolism; Endoplasmic Reticulum/metabolism; Microsomes/metabolism; Mitochondria/metabolism; Pregnenolone/metabolism*; Gonadal Steroid Hormones/metabolism; Testis/metabolism*; Testosterone/metabolism
  3. Looi LM
    Malays J Pathol, 1999 Jun;21(1):29-35.
    PMID: 10879276
    A review of routine histopathological samples and autopsies examined at the Department of Pathology, University of Malaya revealed 15 cases of amyloidosis of the lung. Two were localized depositions limited to the lung while in the remainder, lung involvement was part of the picture of systemic amyloidosis. Both cases of localized amyloidosis presented with symptomatic lung/bronchial masses and a clinical diagnosis of tumour. Histology revealed "amyloidomas" associated with heavy plasma cell and lymphocytic infiltration and the presence of multinucleated giant cells. In both cases, the amyloid deposits were immunopositive for lambda light chains and negative for kappa chains and AA protein. One was a known systemic lupus erythematosus patient with polyclonal hypergammaglobulinaemia. The other patient was found to have plasma cell dyscrasia with monoclonal IgG lambda gammopathy. Both patients did not develop systemic amyloidosis. In contrast, lung involvement in systemic AA amyloidosis was not obvious clinically or macroscopically but was histologically evident in 75% of cases subjected to autopsy. Amyloid was detected mainly in the walls of arterioles and small vessels, and along the alveolar septa. It was less frequently detected in the pleura, along the basement membrane of the bronchial epithelium and around bronchial glands. In one case of systemic AL amyloidosis associated with multiple myeloma, an "amyloidoma" occurred in the subpleural region reminiscent of localized amyloidosis. These cases pose questions on (1) whether localized "tumour-like" amyloidosis is a forme fruste of systemic AL amyloidosis and (2) the differing pattern of tissue deposition of different chemical types of amyloid fibrils, with the suggestion that light chain amyloid has a greater tendency to nodular deposition than AA amyloid.
    Matched MeSH terms: Amyloid/metabolism*; Amyloidosis/metabolism*; Lung/metabolism*
  4. Abu Bakar MA
    Med J Malaysia, 1987 Dec;42(4):290-3.
    PMID: 3331409
    Matched MeSH terms: Bile/metabolism; Proteins/metabolism; Lipid Metabolism
  5. Ahmed MJ, Okoye PU, Hummadi EH, Hameed BH
    Bioresour Technol, 2019 Apr;278:159-164.
    PMID: 30685620 DOI: 10.1016/j.biortech.2019.01.054
    A high-performance porous biochar adsorbent prepared by facile thermal pyrolysis of seaweed (Gelidiella acerosa) is reported. The textural characteristics of the prepared seaweed biochar (SWBC) and the performance in the adsorption of methylene blue (MB) dye were evaluated. The batch experiment for the adsorption of MB was conducted under different parameters, such as temperature, pH, and initial concentration of MB in the range of 25-400 mg/L. The developed SWBC exhibited a relatively high surface area, average pore size, and pore volume of 926.39 m2/g, 2.45 nm, and 0.57 cm3/g, respectively. The high surface area and pristine mineral constituents of the biochar promoted a high adsorption capacity of 512.67 mg/g of MB at 30 °C. The adsorption isotherm and kinetics data best fitted the Langmuir and pseudo-second-order equations. The results indicate that SWBC is efficient for MB adsorption and could be a potential adsorbent for wastewater treatment.
    Matched MeSH terms: Rhodophyta/metabolism*; Methylene Blue/metabolism*; Seaweed/metabolism*
  6. Loh HH, Sukor N
    J Hum Hypertens, 2020 01;34(1):5-15.
    PMID: 31822780 DOI: 10.1038/s41371-019-0294-8
    Primary aldosteronism (PA), the most common cause of secondary hypertension, is a well-recognized condition that can lead to cardiovascular and renal complications. PA is frequently left undiagnosed and untreated, leading to aldosterone-specific morbidity and mortality. In this review we highlight the evidence linking PA with other conditions such as (i) diabetes mellitus, (ii) obstructive sleep apnea, and (iii) bone health, along with clinical implications and proposed underlying mechanisms.
    Matched MeSH terms: Aldosterone/metabolism*; Diabetes Mellitus/metabolism; Sleep Apnea, Obstructive/metabolism
  7. Jing H, Liu Z, Kuan SH, Chieng S, Ho CL
    Molecules, 2021 May 21;26(11).
    PMID: 34064160 DOI: 10.3390/molecules26113084
    Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.
    Matched MeSH terms: Gram-Positive Bacteria/metabolism*; Iron/metabolism*; Kaolin/metabolism*
  8. Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF, et al.
    Acta Biochim Biophys Sin (Shanghai), 2021 Jul 28;53(8):961-978.
    PMID: 34180502 DOI: 10.1093/abbs/gmab077
    Aggressive tissue biopsy is commonly unavoidable in the management of most suspected tumor cases to conclusively verify the presence of cancerous cells through histological assessment. The extracted tissue is also immunostained for detection of antigens (tissue tumor markers) of potential prognostic or therapeutic importance to assist in treatment decision. Although liquid biopsies can be a powerful tool for monitoring treatment response, they are still excluded from standard cancer diagnostics, and their utility is still being debated in the scientific community. With a myriad of soluble tissue tumor markers now being discovered, liquid biopsies could completely change the current paradigms of cancer management. Recently, soluble programmed cell death ligand-1 (sPD-L1), which is found in the peripheral blood, i.e. serum and plasma, has shown potential as a pre-therapeutic predictive marker as well as a prognostic biomarker to monitor treatment efficacy. Thus, this review focuses on the emergence of sPD-L1 and promising technologies for its detection in order to support liquid biopsies for future cancer management.
    Matched MeSH terms: Neoplasm Proteins/metabolism*; Biomarkers, Tumor/metabolism*; Antigens, CD274/metabolism*
  9. Nosheen S, Naz T, Yang J, Hussain SA, Fazili ABA, Nazir Y, et al.
    Microb Cell Fact, 2021 Feb 27;20(1):52.
    PMID: 33639948 DOI: 10.1186/s12934-021-01545-y
    BACKGROUND: Mucor circinelloides WJ11 is a high-lipid producing strain and an excellent producer of γ-linolenic acid (GLA) which is crucial for human health. We have previously identified genes that encode for AMP-activated protein kinase (AMPK) complex in M. circinelloides which is an important regulator for lipid accumulation. Comparative transcriptional analysis between the high and low lipid-producing strains of M. circinelloides showed a direct correlation in the transcriptional level of AMPK genes with lipid metabolism. Thus, the role of Snf-β, which encodes for β subunit of AMPK complex, in lipid accumulation of the WJ11 strain was evaluated in the present study.

    RESULTS: The results showed that lipid content of cell dry weight in Snf-β knockout strain was increased by 32 % (from 19 to 25 %). However, in Snf-β overexpressing strain, lipid content of cell dry weight was decreased about 25 % (from 19 to 14.2 %) compared to the control strain. Total fatty acid analysis revealed that the expression of the Snf-β gene did not significantly affect the fatty acid composition of the strains. However, GLA content in biomass was increased from 2.5 % in control strain to 3.3 % in Snf-β knockout strain due to increased lipid accumulation and decreased to 1.83 % in Snf-β overexpressing strain. AMPK is known to inactivate acetyl-CoA carboxylase (ACC) which catalyzes the rate-limiting step in lipid synthesis. Snf-β manipulation also altered the expression level of the ACC1 gene which may indicate that Snf-β control lipid metabolism by regulating ACC1 gene.

    CONCLUSIONS: Our results suggested that Snf-β gene plays an important role in regulating lipid accumulation in M. circinelloides WJ11. Moreover, it will be interesting to evaluate the potential of other key subunits of AMPK related to lipid metabolism. Better insight can show us the way to manipulate these subunits effectively for upscaling the lipid production. Up to our knowledge, it is the first study to investigate the role of Snf-β in lipid accumulation in M. circinelloides.

    Matched MeSH terms: Mucor/metabolism*; Lipid Metabolism; AMP-Activated Protein Kinases/metabolism*
  10. Shuib FN, Husaini A, Zulkharnain A, Roslan HA, Guan TM
    ScientificWorldJournal, 2016;2016:8296239.
    PMID: 27803944
    In many industrial areas such as in food, pharmaceutical, cosmetic, printing, and textile, the use of synthetic dyes has been integral with products such as azo dye, anthrax, and dyestuffs. As such, these industries produce a lot of waste by-products that could contaminate the environment. Bioremediation, therefore, has become an important emerging technology due to its cost-sustainable, effective, natural approach to cleaning up contaminated groundwater and soil via the use of microorganisms. The use of microorganisms in bioremediation requires the optimisation of parameters used in cultivating the organism. Thus the aim of the work was to assess the degradation of Remazol Brilliant Blue R (RBBR) dye on soil using Plackett-Burman design by the basidiomycete, M. cladophyllus UMAS MS8. Biodegradation analyses were carried out on a soil spiked with RBBR and supplemented with rice husk as the fungus growth enhancer. A two-level Plackett-Burman design was used to screen the medium components for the effects on the decolourization of RBBR. For the analysis, eleven variables were selected and from these four parameters, dye concentration, yeast extract concentration, inoculum size, and incubation time, were found to be most effective to degrade RBBR with up to 91% RBBR removal in soil after 15 days.
    Matched MeSH terms: Coloring Agents/metabolism*; Soil Pollutants/metabolism*; Marasmius/metabolism*
  11. Ratanabanangkoon K, Simsiriwong P, Pruksaphon K, Tan KY, Chantrathonkul B, Eursakun S, et al.
    Sci Rep, 2018 06 26;8(1):9716.
    PMID: 29946111 DOI: 10.1038/s41598-018-27794-3
    In order to facilitate/expedite the production of effective and affordable snake antivenoms, a novel in vitro potency assay was previously developed. The assay is based on an antiserum's ability to bind to postsynaptic neurotoxin (PSNT) and thereby inhibit the PSNT binding to the nicotinic acetylcholine receptor (nAChR). The assay was shown to work well with antiserum against Thai Naja kaouthia which produces predominantly the lethal PSNTs. In this work, the assay is demonstrated to work well with antiserum/antivenom against Bungarus candidus (BC), which also produces lethal presynaptic neurotoxins, as well as antivenom against Sri Lankan Naja naja (NN), which produces an abundance of cytotoxins. The in vitro and in vivo median effective ratios (ER50s) for various batches of antisera against BC showed a correlation (R2) of 0.8922 (p 
    Matched MeSH terms: Antivenins/metabolism*; Receptors, Nicotinic/metabolism*; Bungarus/metabolism*
  12. Jamaluddin N, Ariff AB, Wong FWF
    Biotechnol Prog, 2019 01;35(1):e2719.
    PMID: 30299004 DOI: 10.1002/btpr.2719
    Aqueous micellar two-phase system (AMTPS) is an extractive technique of biomolecule, where it is based on the differential partitioning behavior of biomolecule between a micelle-rich and a micelle-poor phase. In this study, an AMTPS composed of a nonionic surfactant, Triton X-100 (TX-100) was used for purifying a bacteriocin-like inhibitory substance (BLIS) derived from Pediococcus acidilactici Kp10. The influences of the surfactant concentration and the effect of additives on the partitioning behavior and activity yield of the BLIS were investigated. The obtained coexistence curves showed that the mixtures of solutions composed of different surfactant concentrations (5-30% w/w) and 50% w/w crude load were able to separate into two phases at temperatures of above 60 °C. The optimum conditions for BLIS partitioning using the TX-100-based AMTPS were: TX-100 concentration of 22.5% w/w, CFCS load of 50% w/w, incubation time of 30 min at 75 °C, and back-extraction using acetone precipitation. This optimal partitioning resulted in an activity yield of 64.3% and a purification factor of 5.8. Moreover, the addition of several additives, such as sorbitol, KCl, dioctyl sulfosuccinate sodium salt, and Coomassie® Brilliant Blue, demonstrated no improvement in the BLIS separation, except for Amberlite® resin XAD-4, where the activity yield was improved to 70.3% but the purification factor was reduced to 2.3. Results from this study have demonstrated the potential and applicability of TX-100-based AMTPS as a primary recovery method for the BLIS from a complex fermentation broth of P. acidilactici Kp10. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2719, 2019.
    Matched MeSH terms: Bacteriocins/metabolism; Octoxynol/metabolism; Pediococcus acidilactici/metabolism*
  13. Wu J, Zhang H, Wang S, Yuan L, Grünhofer P, Schreiber L, et al.
    J Plant Res, 2019 Jul;132(4):531-540.
    PMID: 31127431 DOI: 10.1007/s10265-019-01115-9
    Areca nuts (seeds of Areca catechu L.) are a traditional and popular masticatory in India, Bangladesh, Malaysia, certain parts of China, and some other countries. Four related pyridine alkaloids (arecoline, arecaidine, guvacoline, and guvacine) are considered being the main functional ingredients in areca nut. Until now, A. catechu is the only known species producing these alkaloids in the Arecaceae family. In the present study, we investigated alkaloid contents in 12 Arecaceae species and found that only Areca triandra Roxb. contained these pyridine alkaloids. We further analyzed in more detail tissue-specific and development-related distribution of these alkaloids in leaves, male and female flowers and fruits in different stages of maturity in A. triandra by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Results revealed that the alkaloids were most abundant in young leaves, the pericarp of ripe fruits and the endosperm of unripe fruits in developmental stage 2. Abundance of the 4 different alkaloids in A. triandra fruits varied during maturation. Pericarps of ripe fruits had the highest arecaidine concentration (4.45 mg g-1) and the lowest guvacoline concentration (0.0175 mg g-1), whereas the endosperm of unripe fruits of developmental stage 2 contained the highest guvacoline concentration (3.39 mg g-1) and the lowest guvacine concentration (0.245 mg g-1). We conclude that A. triandra is useful in future as a further valuable source of Areca alkaloids.
    Matched MeSH terms: Alkaloids/metabolism*; Areca/metabolism*; Arecoline/metabolism; Fruit/metabolism; Nicotinic Acids/metabolism; Pyridines/metabolism; Plant Leaves/metabolism; Flowers/metabolism
  14. Al Farraj DA, Hadibarata T, Yuniarto A, Syafiuddin A, Surtikanti HK, Elshikh MS, et al.
    Bioprocess Biosyst Eng, 2019 Jun;42(6):963-969.
    PMID: 30888502 DOI: 10.1007/s00449-019-02096-8
    Polycyclic aromatics hydrocarbons (PAHs) are ubiquitous and toxic pollutants that are dangerous to humans and living organism in aquatic environment. Normally, PAHs has lower molecular weight such as phenanthrene and naphthalene that are easy and efficient to degrade, but high-molecular-weight PAHs such as chrysene and pyrene are difficult to be biodegraded by common microorganism. This study investigated the isolation and characterization of a potential halophilic bacterium capable of utilizing two high-molecular-weight PAHs. At the end of the experiment (25-30 days of incubation), bacterial counts have reached a maximum level (over 40 × 1016 CFU/mL). The highest biodegradation rate of 77% of chrysene in 20 days and 92% of pyrene in 25 days was obtained at pH 7, temperature 25 °C, agitation of 150 rpm and Tween 80 surfactant showing to be the most impressive parameters for HMWPAHs biodegradation in this research. The metabolism of initial compounds revealed that Hortaea sp. B15 utilized pyrene to form phthalic acid while chrysene was metabolized to form 1-hydroxy-2-naphthoic acid. The result showed that Hortaea sp. B15 can be promoted for the study of in situ biodegradation of high molecular weight PAH.
    Matched MeSH terms: Chrysenes/metabolism*; Polycyclic Hydrocarbons, Aromatic/metabolism*; Pyrenes/metabolism*
  15. Tegginamani AS, Kallarakkal TG, Vanishree HS, Muttalib KBA
    J Coll Physicians Surg Pak, 2019 Jul;29(7):688.
    PMID: 31253228 DOI: 10.29271/jcpsp.2019.07.688
    Matched MeSH terms: Leukoplakia, Oral/metabolism*; Biomarkers/metabolism; AC133 Antigen/metabolism*
  16. Teo CH, Phon B, Parhar I
    PMID: 34566893 DOI: 10.3389/fendo.2021.728862
    Gonadotropin-inhibitory hormone (GnIH) was first discovered in the Japanese quail, and peptides with a C-terminal LPXRFamide sequence, the signature protein structure defining GnIH orthologs, are well conserved across vertebrate species, including fish, reptiles, amphibians, avians, and mammals. In the mammalian brain, three RFamide-related proteins (RFRP-1, RFRP-2, RFRP-3 = GnIH) have been identified as orthologs to the avian GnIH. GnIH is found primarily in the hypothalamus of all vertebrate species, while its receptors are distributed throughout the brain including the hypothalamus and the pituitary. The primary role of GnIH as an inhibitor of gonadotropin-releasing hormone (GnRH) and pituitary gonadotropin release is well conserved in mammalian and non-mammalian species. Circadian rhythmicity of GnIH, regulated by light and seasons, can influence reproductive activity, mating behavior, aggressive behavior, and feeding behavior. There is a potential link between circadian rhythms of GnIH, anxiety-like behavior, sleep, stress, and infertility. Therefore, in this review, we highlight the functions of GnIH in biological rhythms, social behaviors, and reproductive and non-reproductive activities across a variety of mammalian and non-mammalian vertebrate species.
    Matched MeSH terms: Glycoproteins/metabolism*; Gonadotropins/metabolism*; Hypothalamic Hormones/metabolism*
  17. Tsutsui K, Osugi T, Son YL, Ubuka T
    Gen Comp Endocrinol, 2018 08 01;264:48-57.
    PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024
    Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
    Matched MeSH terms: Brain/metabolism; Glycoproteins/metabolism*; Vertebrates/metabolism
  18. Omar FN, Hafid HS, Samsu Baharuddin A, Mohammed MAP, Abdullah J
    Planta, 2017 Sep;246(3):567-577.
    PMID: 28620814 DOI: 10.1007/s00425-017-2717-5
    MAIN CONCLUSION: X-ray microtomography results revealed that delignification process damaged the oil palm fibers, which correlated well with reduction of lignin components and increase of the phenolic content. Biodegradation investigation of natural fibers normally focuses on physico-chemical analysis, with less emphasis on physical aspect like fiber structures affect from microbial activity. In this work, the performance of Pycnoporus sanguineus to delignify oil palm empty fruit bunch fibers through solid-state fermentation utilizing various ratio of POME sludge was reported. In addition to tensile testing, physico-chemical and X-ray microtomography (µ-CT) analyses on the oil palm fibers were conducted to determine the effectiveness of the degradation process. The best ratio of fiber to fungi (60:40) was chosen based on the highest lignin loss and total phenolic content values and further investigation was performed to obtain fermentation kinetics data of both laccase and manganese peroxidase. µ-CT results revealed that delignification process damaged the pre-treated and untreated fibers structure, as evident from volume reduction after degradation process. This is correlated with reduction of lignin component and increase of the phenolic content, as well as lower stress-strain curves of the pre-treated fibers compared to the untreated ones (from tensile testing). It is suggested that P. sanguineus preferred to consume the outer layer of the fiber, before it penetrates through the cellular structure of the inner fiber.
    Matched MeSH terms: Lignin/metabolism*; Arecaceae/metabolism*; Pycnoporus/metabolism
  19. Kassim MA, Meng TK
    Sci Total Environ, 2017 Apr 15;584-585:1121-1129.
    PMID: 28169025 DOI: 10.1016/j.scitotenv.2017.01.172
    Carbon dioxide (CO2) using biological process is one of the promising approaches for CO2 capture and storage. Recently, biological sequestration using microalgae has gained many interest due to its capability to utilize CO2 as carbon source and biomass produced can be used as a feedstock for other value added product for instance biofuel and chemicals. In this study, the CO2 biofixation by two microalgae species, Chlorella sp. and Tetraselmis suecica was investigated using different elevated CO2 concentration. The effect of CO2 concentration on microalgae growth kinetic, biofixation and its chemical composition were determined using 0.04, 5, 15 and 30% CO2. The variation of initial pH value and its relationship on CO2 concentration toward cultivation medium was also investigated. The present study indicated that both microalgae displayed different tolerance toward CO2 concentration. The maximum biomass production and biofixation for Chlorella sp. of 0.64gL-1 and 96.89mgL-1d-1 was obtained when the cultivation was carried out using 5 and 15% CO2, respectively. In contrast, the maximum biomass production and CO2 biofixation for T. suecica of 0.72gL-1 and 111.26mgL-1d-1 were obtained from cultivation using 15 and 5% CO2. The pH value for the cultivation medium using CO2 was between 7.5 and 9, which is favorable for microalgal growth. The potential of biomass obtained from the cultivation as a biorefinery feedstock was also evaluated. An anaerobic fermentation of the microalgae biomass by bacteria Clostridium saccharoperbutylacenaticum N1-4 produced various type of value added product such as organic acid and solvent. Approximately 0.27 and 0.90gL-1 of organic acid, which corresponding to acetic and butyric acid were produced from the fermentation of Chlorella sp. and T. suecica biomass. Overall, this study suggests that Chlorella sp. and T. suecica are efficient microorganism that can be used for CO2 biofixation and as a feedstock for chemical production.
    Matched MeSH terms: Chlorophyta/metabolism; Chlorella/metabolism; Microalgae/metabolism*
  20. Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M
    FEMS Microbiol Rev, 2023 Sep 05;47(5).
    PMID: 37715317 DOI: 10.1093/femsre/fuad052
    Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
    Matched MeSH terms: Bacteria/metabolism; Bacterial Proteins/metabolism; Prokaryotic Cells/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links