METHODS: Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated.
RESULTS: B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds.
CONCLUSION: Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.
Methods: The matrix patches were prepared by using different polymers, with and without silicone adhesive, dibutyl sebacate and mupirocin. The patches were characterized for mechanical properties, drug content, moisture content, water absorption capacity and Fourier transform infrared spectrum. In vitro release studies were performed by using Franz diffusion cell. In vitro disk diffusion assay was performed on the Mueller-Hinton Agar plate to measure the zone of inhibition of the patches. The in vivo study was performed on four groups of rats with bacterial counts at three different time intervals, along with skin irritancy and histopathologic studies.
Results: The patches showed appropriate average thickness (0.63-1.12 mm), tensile strength (5.08-10.08 MPa) and modulus of elasticity (21.53-42.19 MPa). The drug content ranged from 94.5% to 97.4%, while the moisture content and water absorption capacities at two relative humidities (75% and 93%) were in the range of 1.082-3.139 and 1.287-4.148 wt%, respectively. Fourier transform infrared spectra showed that there were no significant interactions between the polymer and the drug. The highest percentage of drug release at 8 hours was 47.94%. The highest zone of inhibition obtained was 28.3 mm against S. aureus. The in vivo studies showed that the bacterial colonies were fewer at 1 cm (7×101 CFU/mL) than at 2 cm (1.3×102 CFU/mL) over a 24-hour period. The patches were nonirritant to the skin, and histopathologic results also showed no toxic or damaging effects to the skin.
Conclusion: The in vitro and in vivo studies indicated that controlled release patches reduced the migration of S. aureus on the live rat skin effectively, however, a longer duration of study is required to determine the effectiveness of the patch on a suitable peritonitis-induced animal model.
METHODS AND RESULTS: Extracts were obtained via sequential solvent extraction method using hexane, dichloromethane, ethyl acetate, methanol and water. Antimicrobial activity testing was done using broth microdilution assay against 17 strains of bacteria. The leaf hexane extract of E. coccinea and rhizome hexane extract of E. sessilanthera showed best antimicrobial activities, with minimum inhibitory concentration (MIC) values ranging from 0·016 to 1 mg ml-1 against Gram-positive bacteria. From these active extracts, two antimicrobials were isolated and identified as trans-2-dodecenal and 8(17),12-labdadiene-15,16-dial with MIC values ranging from 4 to 8 μg ml-1 against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus.
CONCLUSION: Etlingera coccinea and E. sessilanthera demonstrated good antimicrobial activities against clinically relevant bacteria strains. The antimicrobial compounds isolated showed low MIC values, hence suggesting their potential use as antimicrobial agents.
SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to identify the potent antimicrobials from these gingers. The antimicrobials isolated could potentially be developed further for use in treatment of bacterial infections. Also, this study warrants further research into other Etlingera species in search for more antimicrobial compounds.