RESULT: An automated 3D modeling pipeline empowered by an Artificial Neural Network (ANN) was developed. This automated 3D modelling pipeline enables automated deformation of a generic 3D model of monogenean anchor into another target 3D anchor. The 3D modelling pipeline empowered by ANN has managed to automate the generation of the 8 target 3D models (representing 8 species: Dactylogyrus primaries, Pellucidhaptor merus, Dactylogyrus falcatus, Dactylogyrus vastator, Dactylogyrus pterocleidus, Dactylogyrus falciunguis, Chauhanellus auriculatum and Chauhanellus caelatus) of monogenean anchor from the respective 2D illustrations input without repeating the tedious modelling procedure.
CONCLUSIONS: Despite some constraints and limitation, the automated 3D modelling pipeline developed in this study has demonstrated a working idea of application of machine learning approach in a 3D modelling work. This study has not only developed an automated 3D modelling pipeline but also has demonstrated a cross-disciplinary research design that integrates machine learning into a specific domain of study such as 3D modelling of the biological structures.
METHODS: A user-friendly software was developed to accurately predict the individual size-specific dose estimation of paediatric patients undergoing computed tomography (CT) scans of the head, thorax, and abdomen. The software includes a calculation equation developed based on a novel SSDE prediction equation that used a population's pre-determined percentage difference between volume-weighted computed tomography dose index (CTDIvol) and SSDE with age. American Association of Physicists in Medicine (AAPM RPT 204) method (manual) and segmentation-based SSDE calculators (indoseCT and XXautocalc) were used to assess the proposed software predictions comparatively.
RESULTS: The results of this study show that the automated equation-based calculation of SSDE and the manual and segmentation-based calculation of SSDE are in good agreement for patients. The differences between the automated equation-based calculation of SSDE and the manual and segmentation-based calculation are less than 3%.
CONCLUSION: This study validated an accurate SSDE calculator that allows users to enter key input values and calculate SSDE.
IMPLICATION FOR PRACTICE: The automated equation-based SSDE software (PESSD) seems a promising tool for estimating individualised CT doses during CT scans.