Displaying publications 141 - 160 of 226 in total

Abstract:
Sort:
  1. Alex L, Chahil JK, Lye SH, Bagali P, Ler LW
    J Hum Genet, 2012 Jun;57(6):358-62.
    PMID: 22534770 DOI: 10.1038/jhg.2012.34
    Hypercholesterolemia is caused by different interactions of lifestyle and genetic determinants. At the genetic level, it can be attributed to the interactions of multiple polymorphisms, or as in the example of familial hypercholesterolemia (FH), it can be the result of a single mutation. A large number of genetic markers, mostly single nucleotide polymorphisms (SNP) or mutations in three genes, implicated in autosomal dominant hypercholesterolemia (ADH), viz APOB (apolipoprotein B), LDLR (low density lipoprotein receptor) and PCSK9 (proprotein convertase subtilisin/kexin type-9), have been identified and characterized. However, such studies have been insufficiently undertaken specifically in Malaysia and Southeast Asia in general. The main objective of this study was to identify ADH variants, specifically ADH-causing mutations and hypercholesterolemia-associated polymorphisms in multiethnic Malaysian population. We aimed to evaluate published SNPs in ADH causing genes, in this population and to report any unusual trends. We examined a large number of selected SNPs from previous studies of APOB, LDLR, PCSK9 and other genes, in clinically diagnosed ADH patients (n=141) and healthy control subjects (n=111). Selection of SNPs was initiated by searching within genes reported to be associated with ADH from known databases. The important finding was 137 mono-allelic markers (44.1%) and 173 polymorphic markers (55.8%) in both subject groups. By comparing to publicly available data, out of the 137 mono-allelic markers, 23 markers showed significant differences in allele frequency among Malaysians, European Whites, Han Chinese, Yoruba and Gujarati Indians. Our data can serve as reference for others in related fields of study during the planning of their experiments.
    Matched MeSH terms: Genetic Markers
  2. Ismail R, Allaudin ZN, Lila MA
    Vaccine, 2012 Sep 7;30(41):5914-20.
    PMID: 22406276 DOI: 10.1016/j.vaccine.2012.02.061
    Gene therapy and vaccines are rapidly developing field in which recombinant nucleic acids are introduced in mammalian cells for enhancement, restoration, initiation or silencing biochemical function. Beside simplicity in manipulation and rapid manufacture process, plasmid DNA-based vaccines have inherent features that make them promising vaccine candidates in a variety of diseases. This present review focuses on the safety concern of the genetic elements of plasmid such as propagation and expression units as well as their host genome for the production of recombinant plasmid DNA. The highlighted issues will be beneficial in characterizing and manufacturing plasmid DNA for save clinical use. Manipulation of regulatory units of plasmid will have impact towards addressing the safety concerns raised in human vaccine applications. The gene revolution with plasmid DNA by alteration of their plasmid and production host genetics will be promising for safe delivery and obtaining efficient outcomes.
    Matched MeSH terms: Genetic Markers
  3. Parveez GK, Bahariah B
    Methods Mol Biol, 2012;847:163-75.
    PMID: 22351007 DOI: 10.1007/978-1-61779-558-9_14
    The effectiveness of mannose (using phosphomannose isomerase [pmi] gene) as a positive selection agent to preferably allow the growth of transformed oil palm embryogenic calli was successfully evaluated. Using the above selection agent in combination with the previously optimized physical and biological parameters and the best constitutive promoter, oil palm embryogenic calli were transformed with pmi gene for producing transgenic plants. Bombarded embryogenic calli were exposed to embryogenic calli medium containing 30:0 g/L mannose to sucrose 3 weeks postbombardment. Selectively, proliferating embryogenic calli started to emerge around 6 months on the above selection medium. The proliferated embryogenic calli were individually isolated once they reached a specific size and regenerated to produce complete plantlets. The complete regenerated plantlets were evaluated for the presence of transgenes by PCR and Southern analyses.
    Matched MeSH terms: Genetic Markers
  4. Seng TY, Mohamed Saad SH, Chin CW, Ting NC, Harminder Singh RS, Qamaruz Zaman F, et al.
    PLoS One, 2011;6(11):e26593.
    PMID: 22069457 DOI: 10.1371/journal.pone.0026593
    Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi origin. The cross out-yielded the average by 8-21% in four trials all of which yielded comparably to the best current commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain - from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16 linkage groups each. The number of markers per group ranged from 8-47 in the former and 12-40 in the latter. The integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage group was 15-57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from 77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population and also being expanded to include yield related QTLs.
    Matched MeSH terms: Genetic Markers
  5. Ang KC, Leow JW, Yeap WK, Hood S, Mahani MC, Md-Zain BM
    Genet. Mol. Res., 2011;10(2):640-9.
    PMID: 21491374 DOI: 10.4238/vol10-2gmr1011
    Malaysia remains as a crossroad of different cultures and peoples, and it has long been recognized that studying its population history can provide crucial insight into the prehistory of Southeast Asia as a whole. The earliest inhabitants were the Orang Asli in Peninsular Malaysia and the indigenous groups in Sabah and Sarawak. Although they were the earliest migrants in this region, these tribes are divided geographically by the South China Sea. We analyzed DNA sequences of 18 Orang Asli using mitochondrial DNA extracted from blood samples, each representing one sub-tribe, and from five Sarawakian Iban. Mitochondrial DNA was extracted from hair samples in order to examine relationships with the main ethnic groups in Malaysia. The D-loop region and cytochrome b genes were used as the candidate loci. Phylogenetic relationships were investigated using maximum parsimony and neighbor joining algorithms, and each tree was subjected to bootstrap analysis with 1000 replicates. Analyses of the HVS I region showed that the Iban are not a distinct group from the Orang Asli; they form a sub-clade within the Orang Asli. Based on the cytochrome b gene, the Iban clustered with the Orang Asli in the same clade. We found evidence for considerable gene flow between Orang Asli and Iban. We concluded that the Orang Asli, Iban and the main ethnic groups of Malaysia are probably derived from a common ancestor. This is in agreement with a single-route migration theory, but it does not dismiss a two-route migration theory.
    Matched MeSH terms: Genetic Markers
  6. Yap CK, Chua BH, Teh CH, Tan SG, Ismail A
    Genetika, 2007 May;43(5):668-74.
    PMID: 17633561
    Genetic variation due to heavy metal contamination has always been an interesting topic of study. Because of the numerous contaminants being found in coastal and intertidal waters, there is always much discussion and argument as to which contaminant(s) caused the variations in the genetic structures of biomonitors. This study used a Single Primer Amplification Reaction (SPAR) technique namely Random Amplified Polymorphic DNA (RAPD) to determine the genetic diversity of the populations of the green-lipped mussel Perna viridis collected from a metal-contaminated site at Kg. Pasir Puteh and those from four relatively' uncontaminated sites (reference sites). Heavy metal levels (Cd, Cu, Pb and Zn) were also measured in the soft tissues and byssus of the mussels from all the sites. Cluster analyses employing UPGMA done based on the RAPD makers grouped the populations into two major clusters; the Bagan Tiang, Pantai Lido, Pontian and Kg. Pasir Puteh populations were in one cluster, while the Sg. Belungkor population clustered by itself. This indicated that the genetic diversity based on bands resulting from the use of all four RAPD primers on P. viridis did not indicate its potential use as a biomarker of heavy metal pollution in coastal waters. However, based on a correlation analysis between a particular metal and a band resulting from a specific RAPD primer revealed some significant (P < 0.01) correlations between the primers and the heavy metal concentrations in the byssus and soft tissues. Thus, the correlation between a particular metal and the bands resulting from the use of a specific RAPD primer on P. viridis could be used as biomonitoring tool of heavy metal pollution.
    Matched MeSH terms: Genetic Markers
  7. Naroui Rad MR, Abdul Kadir M, Rafii MY, Jaafar HZ, Naghavi MR
    Genet. Mol. Res., 2012;11(4):3882-8.
    PMID: 23212327 DOI: 10.4238/2012.November.12.5
    This study was carried out to evaluate the genetic effect of quantitative trait loci (QTLs) conferring drought tolerance in wheat. A population of 120 F(2) individuals from the cross between the drought-tolerant S-78-11 and drought-sensitive Tajan cultivars were analyzed for their segregation under drought stress conditions. The relative water content under drought stress conditions exhibited continuous variation, indicating the minor gene effects on the trait. Single-marker analysis (SMA) was carried out to detect the main QTL association with drought tolerance. The SMA results revealed that the simple sequence repeat markers GWM182 and GWM292 on chromosome 5D and GWM410 on chromosome 5A exhibited significant association with drought tolerance, accounting for 30, 22, and 21% of the total variation, respectively. The 3 genetic loci, especially GWM182, can be used in marker-assisted selection methods in drought tolerance breeding in wheat.
    Matched MeSH terms: Genetic Markers
  8. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Alam MA, Abdul Rahim H, et al.
    J Sci Food Agric, 2016 Mar 15;96(4):1297-305.
    PMID: 25892666 DOI: 10.1002/jsfa.7222
    Blast caused by the fungus Magnaporthe oryzae is a significant disease threat to rice across the world and is especially prevalent in Malaysia. An elite, early-maturing, high-yielding Malaysian rice variety, MR263, is susceptible to blast and was used as the recurrent parent in this study. To improve MR263 disease resistance, the Pongsu Seribu 1 rice variety was used as donor of the blast resistance Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 quantitative trait locus (QTL). The objective was to introgress these blast resistance genes into the background of MR263 using marker-assisted backcrossing with both foreground and background selection.
    Matched MeSH terms: Genetic Markers
  9. Ujino T, Kawahara T, Tsumura Y, Nagamitsu T, Yoshimaru H, Ratnam W
    Heredity (Edinb), 1998 Oct;81 ( Pt 4):422-8.
    PMID: 9839438
    Nine simple sequence repeat (SSR) markers were developed from Shorea curtisii using two different methods. One SSR locus was isolated by the commonly used method of screening by colony hybridization, and the other eight loci were isolated by a vectorette PCR method. Primer pairs were designed based on the sequences of all these SSR loci. Analysis of 40 individuals of S. curtisii from natural forest in Malaysia revealed that all SSR loci were polymorphic. Four SSR markers, Shc01, Shc04, Shc07 and Shc09, were highly polymorphic. We have also tested the applicability of these SSR printers to other species of Dipterocarpaceae using PCR amplification. Because the flanking region sequences of the S. curtisii SSRs were well conserved within this family, the SSR primers for S. curtisii can be applied to almost all species of Dipterocarpaceae.
    Matched MeSH terms: Genetic Markers
  10. Lau CH, Yusoff K, Tan SG, Yamada Y
    Biotechniques, 1995 Feb;18(2):262-6.
    PMID: 7727128
    Laboratories intending to adopt cycle sequencing of PCR products in their routine analysis often face a confusing range of methods and kits. Through the study of mitochondrial cytochrome b, we have shown that clean and highly reproducible sequences could be obtained by using a combination of existing simple and economical methods in the preparation of DNA templates, PCR, purification of PCR products and sequencing. Our protocol is useful in itself or as a standard in typing other PCR-amplified DNA at the population level.
    Matched MeSH terms: Genetic Markers
  11. Zhao K, Ishida Y, Green CE, Davidson AG, Sitam FAT, Donnelly CL, et al.
    J Hered, 2019 12 17;110(7):761-768.
    PMID: 31674643 DOI: 10.1093/jhered/esz058
    Illegal hunting is a major threat to the elephants of Africa, with more elephants killed by poachers than die from natural causes. DNA from tusks has been used to infer the source populations for confiscated ivory, relying on nuclear genetic markers. However, mitochondrial DNA (mtDNA) sequences can also provide information on the geographic origins of elephants due to female elephant philopatry. Here, we introduce the Loxodonta Localizer (LL; www.loxodontalocalizer.org), an interactive software tool that uses a database of mtDNA sequences compiled from previously published studies to provide information on the potential provenance of confiscated ivory. A 316 bp control region sequence, which can be readily generated from DNA extracted from ivory, is used as a query. The software generates a listing of haplotypes reported among 1917 African elephants in 24 range countries, sorted in order of similarity to the query sequence. The African locations from which haplotype sequences have been previously reported are shown on a map. We demonstrate examples of haplotypes reported from only a single locality or country, examine the utility of the program in identifying elephants from countries with varying degrees of sampling, and analyze batches of confiscated ivory. The LL allows for the source of confiscated ivory to be assessed within days, using widely available molecular methods that do not depend on a particular platform or laboratory. The program enables identification of potential regions or localities from which elephants are being poached, with capacity for rapid identification of populations newly or consistently targeted by poachers.
    Matched MeSH terms: Genetic Markers
  12. Wong AR, Zilfalil BA, Bhuiyan ZA
    Med J Malaysia, 2019 08;74(4):341-343.
    PMID: 31424047
    Long QT syndrome (LQTS) is predominantly a genetic cardiac arrhythmia disorder. We report here our study on long QT syndrome from two children from Kelantan, Malaysia. Clinical and genetic findings of these two unrelated Malay children with LQTS is discussed. We found a Long QT, type 1 causal mutation, p.Ile567Thr in the KCNQ1 gene in the first child. A pathogenic mutation could not be detected in the second child, explaining the heterogeneity of this disease.
    Matched MeSH terms: Genetic Markers
  13. Kongrit C, Markviriya D, Laithong P, Khudamrongsawat J
    Folia Primatol., 2020;91(1):1-14.
    PMID: 31593962 DOI: 10.1159/000500007
    Confiscated slow lorises (Nycticebus spp.) at Bangpra Water-Bird Breeding Center (BWBC) in Thailand provided an opportunity to demonstrate the application of noninvasive genetic approaches for species identification when morphology of the animals was ambiguous. The slow lorises at BWBC had been assigned to either N. bengalensis or N. pygmaeus, based on body size. However, the morphology of N. bengalensis is highly variable and overlaps with that of N. coucang (sensu stricto). Phylogenetic analysis of cytochrome b and d-loop mitochondrial regions placed all confiscated N. pygmaeus with the published sequences of N. pygmaeus and distinguished them from other Nycticebus. All other confiscated individuals formed a monophyletic clade, most individuals grouping with published N. bengalensis sequences from wild populations in Vietnam and distinct from Peninsular Malaysian and Sumatran N. coucang, Javan N. javanicus and Bornean N. menagensis. Six individuals within the N. bengalensis clade formed a separate subgroup that did not group with any reference material as indicated by phylogenetic and haplotype network analyses. Whether these trafficked individuals are undiscovered wild populations will require further investigation. Additional genetic studies of wild slow loris populations in different regions are therefore urgently required for reference to aid the protection and conservation of these threatened species.
    Matched MeSH terms: Genetic Markers
  14. Ng CH, Ng KKS, Lee SL, Tnah LH, Lee CT, Zakaria NF
    Forensic Sci Int Genet, 2020 01;44:102188.
    PMID: 31648150 DOI: 10.1016/j.fsigen.2019.102188
    To inform product users about the origin of timber, the implementation of a traceability system is necessary for the forestry industry. In this study, we developed a comprehensive genetic database for the important tropical timber species Merbau, Intsia palembanica, to trace its geographic origin within peninsular Malaysia. A total of 1373 individual trees representing 39 geographically distinct populations of I. palembanica were sampled throughout peninsular Malaysia. We analyzed the samples using a combination of four chloroplast DNA (cpDNA) markers and 14 short tandem repeat (STR) markers to establish both cpDNA haplotype and STR allele frequency databases. A haplotype map was generated through cpDNA sequencing for population identification, resulting in six unique haplotypes based on 10 informative intraspecifically variable sites. Subsequently, an STR allele frequency database was developed from 14 STRs allowing individual identification. Bayesian cluster analysis divided the individuals into two genetic clusters corresponding to the northern and southern regions of peninsular Malaysia. Tests of conservativeness showed that the databases were conservative after the adjustment of the θ values to 0.2000 and 0.2900 for the northern (f = 0.0163) and southern (f = 0.0285) regions, respectively. Using self-assignment tests, we observed that individuals were correctly assigned to populations at rates of 40.54-94.12% and to the identified regions at rates of 79.80-80.62%. Both the cpDNA and STR markers appear to be useful for tracking Merbau timber originating from peninsular Malaysia. The use of these forensic tools in addition to the existing paper-based timber tracking system will help to verify the legality of the origin of I. palembanica and to combat illegal logging issues associated with the species.
    Matched MeSH terms: Genetic Markers
  15. Wong CK, Bernardo R
    Theor Appl Genet, 2008 Apr;116(6):815-24.
    PMID: 18219476 DOI: 10.1007/s00122-008-0715-5
    Oil palm (Elaeis guineensis Jacq.) requires 19 years per cycle of phenotypic selection. The use of molecular markers may reduce the generation interval and the cost of oil-palm breeding. Our objectives were to compare, by simulation, the response to phenotypic selection, marker-assisted recurrent selection (MARS), and genomewide selection with small population sizes in oil palm, and assess the efficiency of each method in terms of years and cost per unit gain. Markers significantly associated with the trait were used to calculate the marker scores in MARS, whereas all markers were used (without significance tests) to calculate the marker scores in genomewide selection. Responses to phenotypic selection and genomewide selection were consistently greater than the response to MARS. With population sizes of N = 50 or 70, responses to genomewide selection were 4-25% larger than the corresponding responses to phenotypic selection, depending on the heritability and number of quantitative trait loci. Cost per unit gain was 26-57% lower with genomewide selection than with phenotypic selection when markers cost US $1.50 per data point, and 35-65% lower when markers cost $0.15 per data point. With population sizes of N = 50 or 70, time per unit gain was 11-23 years with genomewide selection and 14-25 years with phenotypic selection. We conclude that for a realistic yet relatively small population size of N = 50 in oil palm, genomewide selection is superior to MARS and phenotypic selection in terms of gain per unit cost and time. Our results should be generally applicable to other tree species that are characterized by long generation intervals, high costs of maintaining breeding plantations, and small population sizes in selection programs.
    Matched MeSH terms: Genetic Markers
  16. Yee EY, Zainuddin ZZ, Ismail A, Yap CK, Tan SG
    J Genet, 2013 Apr;92(1):e15-8.
    PMID: 23628715
    Matched MeSH terms: Genetic Markers
  17. Abdul Rahman Z, Choay-Hoong L, Mat Khairuddin R, Ab Razak S, Othman AS
    J Genet, 2012 Aug;91(2):e82-5.
    PMID: 22932425
    Matched MeSH terms: Genetic Markers
  18. Taslima K, Wehner S, Taggart JB, de Verdal H, Benzie JAH, Bekaert M, et al.
    BMC Genet, 2020 04 29;21(1):49.
    PMID: 32349678 DOI: 10.1186/s12863-020-00853-3
    BACKGROUND: Tilapias (Family Cichlidae) are the second most important group of aquaculture species in the world. They have been the subject of much research on sex determination due to problems caused by early maturation in culture and their complex sex-determining systems. Different sex-determining loci (linkage group 1, 20 and 23) have been detected in various tilapia stocks. The 'genetically improved farmed tilapia' (GIFT) stock, founded from multiple Nile tilapia (Oreochromis niloticus) populations, with some likely to have been introgressed with O. mossambicus, is a key resource for tilapia aquaculture. The sex-determining mechanism in the GIFT stock was unknown, but potentially complicated due to its multiple origins.

    RESULTS: A bulk segregant analysis (BSA) version of double-digest restriction-site associated DNA sequencing (BSA-ddRADseq) was developed and used to detect and position sex-linked single nucleotide polymorphism (SNP) markers in 19 families from the GIFT strain breeding nucleus and two Stirling families as controls (a single XY locus had been previously mapped to LG1 in the latter). About 1500 SNPs per family were detected across the genome. Phenotypic sex in Stirling families showed strong association with LG1, whereas only SNPs located in LG23 showed clear association with sex in the majority of the GIFT families. No other genomic regions linked to sex determination were apparent. This region was validated using a series of LG23-specific DNA markers (five SNPs with highest association to sex from this study, the LG23 sex-associated microsatellite UNH898 and ARO172, and the recently isolated amhy marker for individual fish (n = 284).

    CONCLUSIONS: Perhaps surprisingly given its multiple origins, sex determination in the GIFT strain breeding nucleus was associated only with a locus in LG23. BSA-ddRADseq allowed cost-effective analysis of multiple families, strengthening this conclusion. This technique has potential to be applied to other complex traits. The sex-linked SNP markers identified will be useful for potential marker-assisted selection (MAS) to control sex-ratio in GIFT tilapia to suppress unwanted reproduction during growout.

    Matched MeSH terms: Genetic Markers
  19. Low VL, Prakash BK
    Exp Appl Acarol, 2018 Jul;75(3):299-307.
    PMID: 30066112 DOI: 10.1007/s10493-018-0279-2
    The brown dog tick Rhipicephalus sanguineus sensu lato (s.l.) is a species complex comprising three main mitochondrial lineages, namely tropical, temperate and southeast European lineages. Despite its medical and veterinary importance, little attention has been paid to the genetic lineage of this species in Southeast Asia. Rhipicephalus sanguineus s.l. from Malaysia was investigated genetically, for the first time, using the mitochondria-encoded cytochrome c oxidase subunit I (COI) and 16S ribosomal RNA (16S) genes. Specifically, a pair of primers was developed to amplify the COI sequences in the present study. Both genes unambiguously assigned Malaysian material into the tropical lineage of R. sanguineus s.l. The 16S sequences were highly conserved; no variation site was observed. The COI sequences revealed slightly higher variation by recovering four haplotypes, one of which is restricted to the northernmost of Peninsular Malaysia. This finding will be a stepping stone in promoting more biological studies of this species complex in this region.
    Matched MeSH terms: Genetic Markers
  20. Fang S, Zhang Y, Shi X, Zheng H, Li S, Zhang Y, et al.
    Genomics, 2020 01;112(1):404-411.
    PMID: 30851358 DOI: 10.1016/j.ygeno.2019.03.003
    In this study, we first identified male-specific SNP markers using restriction site-associated DNA sequencing, and further developed a PCR-based sex identification technique for Charybdis feriatus. A total of 296.96 million clean reads were obtained, with 114.95 and 182.01 million from females and males. After assembly and alignment, 10 SNP markers were identified being heterozygous in males but homozygous in females. Five markers were further confirmed to be male-specific in a large number of individuals. Moreover, two male-specific sense primers and a common antisense primer were designed, using which, a PCR-based genetic sex identification method was successfully developed and used to identify the sex of 103 individuals, with a result of 49 females and 54 males. The presence of male-specific SNP markers suggests an XX/XY sex determination system for C. feriatus. These findings should be helpful for better understanding sex determination mechanism, and drafting artificial breeding program in crustaceans.
    Matched MeSH terms: Genetic Markers
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links