Displaying publications 141 - 152 of 152 in total

Abstract:
Sort:
  1. Hosseini SM, Abdul Aziz H
    Bioresour Technol, 2013 Apr;133:240-7.
    PMID: 23428821 DOI: 10.1016/j.biortech.2013.01.098
    The effects of thermochemical pretreatment and continuous thermophilic conditions on the composting of a mixture of rice straw residue and cattle manure were investigated using a laboratory-scale composting reactor. Results indicate that the composting period of rice straw can be shortened to less than 10 days by applying alkali pre-treatment and continuous thermophilic composting conditions. The parameters obtained on day 9 of this study are similar to the criteria level published by the Canadian Council of Ministers of the Environment. The moisture content, organic matter reduction, pH level, electrical conductivity, total organic carbon reduction, soluble chemical oxygen demand reduction, total Kjeldahl nitrogen, carbon-to-nitrogen ratio, and germination index were 62.07%, 16.99%, 7.30%, 1058 μS/cm, 17.00%, 83.43%, 2.06%, 16.75%, and 90.33%, respectively. The results of this study suggest that the application of chemical-biological integrated processes under thermophilic conditions is a novel method for the rapid degradation and maturation of rice straw residue.
    Matched MeSH terms: Electric Conductivity
  2. Winie T, Arof AK
    Spectrochim Acta A Mol Biomol Spectrosc, 2006 Mar 1;63(3):677-84.
    PMID: 16157506
    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF(3)SO(3))-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF(3)SO(3) interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR)(2), CONHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF(3)SO(3) has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li(+) ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.
    Matched MeSH terms: Electric Conductivity
  3. Noroozi M, Zakaria A, Radiman S, Abdul Wahab Z
    PLoS One, 2016;11(4):e0152699.
    PMID: 27064575 DOI: 10.1371/journal.pone.0152699
    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.
    Matched MeSH terms: Electric Conductivity
  4. Chang HC, Sun T, Sultana N, Lim MM, Khan TH, Ismail AF
    Mater Sci Eng C Mater Biol Appl, 2016 Apr 1;61:396-410.
    PMID: 26838866 DOI: 10.1016/j.msec.2015.12.074
    In the current study, electrospinning technique was used to fabricate composite membranes by blending of a synthetic polymer, polylactic acid (PLA) and a natural polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV. Conductive membranes were prepared by dipping PLA/PHBV electrospun membranes into poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (
    Matched MeSH terms: Electric Conductivity
  5. Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Jun 30;181:82-98.
    PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108
    Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
    Matched MeSH terms: Electric Conductivity
  6. Mukhtar NH, Mamat NA, See HH
    J Pharm Biomed Anal, 2018 Sep 05;158:184-188.
    PMID: 29883881 DOI: 10.1016/j.jpba.2018.05.044
    A sample pre-treatment method based on a dynamic mixed matrix membrane tip extraction followed by capillary electrophoresis with contactless conductivity detection (CE-C4D) was evaluated for the determination of tobramycin in human plasma. The extraction tip device consisted of a cellulose triacetate membrane tip wall immobilised with 15% (w/w) of hydrophilic lipophilic balance (HLB) nanoparticles as adsorbent. The extraction was performed dynamically by withdrawing/dispensing the plasma sample through the tip device followed by desorption into 20 μL of acidified aqueous solution at pH 3 prior to the CE-C4D analysis. Under the optimum conditions, the detection limit of the method for tobramycin was 10 ng/mL, with intraday and interday repeatability RSDs of 3.5% and 4.5%, respectively. Relative recoveries in spiked human plasma were 99.6%-99.9%. The developed approach was successfully demonstrated for the quantification of tobramycin in human plasma samples.
    Matched MeSH terms: Electric Conductivity
  7. Zakaria NI, Ismail MR, Awang Y, Megat Wahab PE, Berahim Z
    Biomed Res Int, 2020;2020:2706937.
    PMID: 32090071 DOI: 10.1155/2020/2706937
    Chilli (Capsicum annum L.) plant is a high economic value vegetable in Malaysia, cultivated in soilless culture containers. In soilless culture, the adoption of small container sizes to optimize the volume of the growing substrate could potentially reduce the production cost, but will lead to a reduction of plant growth and yield. By understanding the physiological mechanism of the growth reduction, several potential measures could be adopted to improve yield under restricted root conditions. The mechanism of growth reduction of plants subjected to root restriction remains unclear. This study was conducted to determine the physiological mechanism of growth reduction of root-restricted chilli plants grown in polyvinyl-chloride (PVC) column of two different volumes, 2392 cm3(root-restricted) and 9570 cm3(control) in soilless culture. Root restriction affected plant growth, physiological process, and yield of chilli plants. Root restriction reduced the photosynthesis rate and photochemical activity of PSII, and increased relative chlorophyll content. Limited root growth in root restriction caused an accumulation of high levels of sucrose in the stem and suggested a transition of the stem as a major sink organ for photoassimilate. Growth reduction in root restriction was not related to limited carbohydrate production, but due to the low sink demand from the roots. Reduction of the total yield per plant about, 23% in root restriction was concomitant, with a slightly increased harvest index which reflected an increased photoassimilate partitioning to the fruit production and suggested more efficient fruits production in the given small plant size of root restriction.
    Matched MeSH terms: Electric Conductivity
  8. Mustapha A, Aris AZ
    PMID: 22571534 DOI: 10.1080/10934529.2012.673305
    Multivariate statistical techniques such as hierarchical Agglomerated cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and factor analysis (FA) were applied to identify the spatial variation and pollution sources of Jakara River, Kano, Nigeria. Thirty surface water samples were collected: 23 along Getsi River and 7 along the main channel of River Jakara. Twenty-three water quality parameters, namely pH, temperature, turbidity, electrical conductivity (EC), dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), Faecal coliform, total solids (TS), nitrates (NO(3)(-)), phosphates (PO(4)(3-)), cobalt (Co), iron (Fe), nickel (Ni), manganese (Mn), copper (Cu), sodium (Na), potassium (K), mercury (Hg), chromium (Cr), cadmium (Cd), lead (Pb), magnesium (Mg), and calcium(Ca) were analysed. HACA grouped the sampling points into three clusters based on the similarities of river water quality characteristics: industrial, domestic, and agricultural water pollution sources. Forward and backward DA effectively discriminated 5 and 15 water quality variables, respectively, each assigned with 100% correctness from the original 23 variables. PCA and FA were used to investigate the origin of each water quality parameter due to various land use activities, 7 principal components were obtained with 77.5% total variance, and in addition PCA identified 3 latent pollution sources to support HACA. From this study, one can conclude that the application of multivariate techniques derives meaningful information from water quality data.
    Matched MeSH terms: Electric Conductivity
  9. Lim PN, Wu TY, Sim EY, Lim SL
    J Sci Food Agric, 2011 Nov;91(14):2637-42.
    PMID: 21725978 DOI: 10.1002/jsfa.4504
    Soybean (Glycine max L.) is one the most commonly consumed legumes worldwide, with 200 million metric tons produced per year. However, the inedible soy husk would usually be removed during the process and the continuous generation of soybean husk may represent a major disposal problem for soybean processing industries. Thus, the main aim of the present study was to investigate the possibility to convert soybean husk (S) amended with market-rejected papaya (P) into vermicompost using Eudrilus eugeniae.
    Matched MeSH terms: Electric Conductivity
  10. Ahmed AM, Sulaiman WN
    Environ Manage, 2001 Nov;28(5):655-63.
    PMID: 11568845
    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.
    Matched MeSH terms: Electric Conductivity
  11. Dalila NR, Arshad MKM, Gopinath SCB, Nuzaihan MNM, Fathil MFM
    Mikrochim Acta, 2020 10 05;187(11):588.
    PMID: 33015730 DOI: 10.1007/s00604-020-04562-7
    Nanofabricated gold nanoparticles (Au-NPs) on MoS2 nanosheets (Au-NPs/MoS2) in back-gated field-effect transistor (BG-FET) are presented, which acts as an efficient semiconductor device for detecting a low concentration of C-reactive protein (C-RP). The decorated nanomaterials lead to an enhanced electron conduction layer on a 100-μm-sized transducing channel. The sensing surface was characterized by Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), atomic force microscopy (AFM), scanning electron microscopy (SEM), and high-power microscopy (HPM). The BG-FET device exhibits an excellent limit of detection of 8.38 fg/mL and a sensitivity of 176 nA/g·mL-1. The current study with Au-NPs/MoS2 BG-FET displays a new potential biosensing technology; especially for integration into complementary metal oxide (CMOS) technology for hand-held future device application.
    Matched MeSH terms: Electric Conductivity
  12. Lim LL, Fu AWC, Lau ESH, Ozaki R, Cheung KKT, Ma RCW, et al.
    Nephrol Dial Transplant, 2019 Aug 01;34(8):1320-1328.
    PMID: 29939305 DOI: 10.1093/ndt/gfy154
    BACKGROUND: Early detection and risk factor control prevent chronic kidney disease (CKD) progression. Evaluation of peripheral autonomic dysfunction may detect incident cardiovascular-renal events in type 2 diabetes (T2D).

    METHODS: SUDOSCAN, a non-invasive tool, provides an age-adjusted electrochemical skin conductance (ESC) composite score incorporating hands/feet ESC measurements, with a score ≤53 indicating sudomotor dysfunction. A consecutive cohort of 2833 Chinese adults underwent structured diabetes assessment in 2012-13; 2028 participants without preexisting cardiovascular disease (CVD) and CKD were monitored for incident cardiovascular-renal events until 2015.

    RESULTS: In this prospective cohort {mean age 57.0 [standard deviation (SD) 10.0] years; median T2D duration 7.0 [interquartile range (IQR) 3.0-13.0] years; 56.1% men; 72.5% never-smokers; baseline ESC composite score 60.7 (SD 14.5)}, 163 (8.0%) and 25 (1.2%) participants developed incident CKD and CVD, respectively, after 2.3 years of follow-up. The adjusted hazard ratios (aHRs) per 1-unit decrease in the ESC composite score for incident CKD, CVD and all-cause death were 1.02 [95% confidence interval (CI) 1.01-1.04], 1.04 (1.00-1.07) and 1.04 (1.00-1.08), respectively. Compared with participants with an ESC composite score >53, those with a score ≤53 had an aHR of 1.56 (95% CI 1.09-2.23) for CKD and 3.11 (95% CI 1.27-7.62) for CVD, independent of common risk markers. When added to clinical variables (sex and duration of diabetes), the ESC composite score improved discrimination of all outcomes with appropriate reclassification of CKD risk.

    CONCLUSIONS: A low ESC composite score independently predicts incident cardiovascular-renal events and death in T2D, which may improve the screening strategy for early intervention.

    Matched MeSH terms: Electric Conductivity
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links