Displaying publications 141 - 160 of 1017 in total

Abstract:
Sort:
  1. Quah ESH, Wood PLJ, Anuar MSS, Muin MA
    Zootaxa, 2020 Apr 23;4767(1):zootaxa.4767.1.6.
    PMID: 33056576 DOI: 10.11646/zootaxa.4767.1.6
    A new, diminutive species of Rock Gecko Cnemaspis tubaensis sp. nov. of the C. kumpoli group, is described from Tuba Island, Langkawi Archipelago, Kedah, Peninsular Malaysia and is differentiated from all other species in the kumpoli group by having a unique combination of morphological and color pattern characteristics, including a maximum SVL of 37.0 mm; 10 or 11 supralabials; eight or nine infralabials; 15-18 semi-linearly arranged paravertebral tubercles; lateral caudal furrow present; lateral caudal tubercles on the anterior portion of the tail; caudal tubercles not encircling tail; five or six precloacal pores; 28 or 29 subdigital lamellae on the fourth toe; smooth ventrals; smooth subcaudals with an enlarged median row of scales; subcaudal region light-grey and speckled with yellow; absence of light-colored ocelli on the shoulder; no yellow postscapular band; dorsum light-brown with sage-green blotches and black spots; flanks with scattered yellow spots; absence of black gular markings in both sexes; and 13.0-22.0% uncorrected pairwise sequence divergences in the NADH dehydrogenase subunit 2 gene (ND2). Cnemaspis tubaensis sp. nov. is the fourth species of Cnemaspis to be described from the Langkawi Archipelago and underscores the underestimated biodiversity of the islands which is in need of more thorough herpetological inventories.
    Matched MeSH terms: Ecosystem*
  2. Stankovic M, Ambo-Rappe R, Carly F, Dangan-Galon F, Fortes MD, Hossain MS, et al.
    Sci Total Environ, 2021 Aug 20;783:146858.
    PMID: 34088119 DOI: 10.1016/j.scitotenv.2021.146858
    Seagrasses have the ability to contribute towards climate change mitigation, through large organic carbon (Corg) sinks within their ecosystems. Although the importance of blue carbon within these ecosystems has been addressed in some countries of Southeast Asia, the regional and national inventories with the application of nature-based solutions are lacking. In this study, we aim to estimate national coastal blue carbon stocks in the seagrass ecosystems in the countries of Southeast Asia including the Andaman and Nicobar Islands of India. This study further assesses the potential of conservation and restoration practices and highlights the seagrass meadows as nature-based solution for climate change mitigation. The average value of the total carbon storage within seagrass meadows of this region is 121.95 ± 76.11 Mg ha-1 (average ± SD) and the total Corg stock of the seagrass meadows of this region was 429.11 ± 111.88 Tg, with the highest Corg stock in the Philippines (78%). The seagrass meadows of this region have the capacity to accumulate 5.85-6.80 Tg C year-1, which accounts for $214.6-249.4 million USD. Under the current rate of decline of 2.82%, the seagrass meadows are emitting 1.65-2.08 Tg of CO2 year-1 and the economic value of these losses accounts for $21.42-24.96 million USD. The potential of the seagrass meadows to the offset current CO2 emissions varies across the region, with the highest contribution to offset is in the seagrass meadows of the Philippines (11.71%). Current national policies and commitments of nationally determined contributions do not include blue carbon ecosystems as climate mitigation measures, even though these ecosystems can contribute up to 7.03% of the countries' reduction goal of CO2 emissions by 2030. The results of this study highlight and promote the potential of the southeast Asian seagrass meadows to national and international agencies as a practical scheme for nature-based solutions for climate change mitigation.
    Matched MeSH terms: Ecosystem*
  3. Huaraca Huasco W, Riutta T, Girardin CAJ, Hancco Pacha F, Puma Vilca BL, Moore S, et al.
    Glob Chang Biol, 2021 08;27(15):3657-3680.
    PMID: 33982340 DOI: 10.1111/gcb.15677
    Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
    Matched MeSH terms: Ecosystem*
  4. Bongalov B, Burslem DFRP, Jucker T, Thompson SED, Rosindell J, Swinfield T, et al.
    Ecol Lett, 2019 Oct;22(10):1608-1619.
    PMID: 31347263 DOI: 10.1111/ele.13357
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.
    Matched MeSH terms: Ecosystem*
  5. O'Bryan CJ, Garnett ST, Fa JE, Leiper I, Rehbein JA, Fernández-Llamazares Á, et al.
    Conserv Biol, 2021 06;35(3):1002-1008.
    PMID: 32852067 DOI: 10.1111/cobi.13620
    Indigenous Peoples' lands cover over one-quarter of Earth's surface, a significant proportion of which is still free from industrial-level human impacts. As a result, Indigenous Peoples and their lands are crucial for the long-term persistence of Earth's biodiversity and ecosystem services. Yet, information on species composition on these lands globally remains largely unknown. We conducted the first comprehensive analysis of terrestrial mammal composition across mapped Indigenous lands based on data on area of habitat (AOH) for 4460 mammal species assessed by the International Union for Conservation of Nature. We overlaid each species' AOH on a current map of Indigenous lands and found that 2695 species (60% of assessed mammals) had ≥10% of their ranges on Indigenous Peoples' lands and 1009 species (23%) had >50% of their ranges on these lands. For threatened species, 473 (47%) occurred on Indigenous lands with 26% having >50% of their habitat on these lands. We also found that 935 mammal species (131 categorized as threatened) had ≥ 10% of their range on Indigenous Peoples' lands that had low human pressure. Our results show how important Indigenous Peoples' lands are to the successful implementation of conservation and sustainable development agendas worldwide.
    Matched MeSH terms: Ecosystem*
  6. Wan-Norafikah O, Nazni WA, Noramiza S, Shafa'ar-Ko'ohar S, Azirol-Hisham A, Nor-Hafizah R, et al.
    Trop Biomed, 2010 Dec;27(3):662-7.
    PMID: 21399609
    A preliminary study on the vertical dispersal of Aedes populations in high-rise apartments was carried out in Presint 9, Putrajaya, Malaysia. Ovitraps were placed indoors within four blocks of high-rise apartments from the ground floors (0.0 - 3.0 m) until up to the tenth floors (28.1 - 30.0 m). Aedes aegypti was the dominant species found in the ovitraps (87.85%), while Aedes albopictus was found in lower numbers. From total number of larvae collected (650), 40.92% of these larvae were obtained from the fourth block; Block D. The peak density of Aedes sp. was observed at level 6 (16.1 - 18.0 m), while Ae. aegypti was found until the tenth floor (28.1 - 30.0 m). In contrast, Ae. albopictus was found only up to the sixth floor (16.1 - 18.0 m). A poor correlation of the mean number of Aedes larvae collected with the level of high-rise apartments occupied (N=40; ρ=-0.349) was also observed which indicated the possibility of lesser Aedes populations to be found at higher level of high-rise apartments. Therefore, larger scale studies are strongly recommended to examine the vertical dispersal of Aedes mosquitoes.
    Matched MeSH terms: Ecosystem*
  7. Lin S, Ng SF, Ong WJ
    Environ Pollut, 2021 Nov 01;288:117677.
    PMID: 34273765 DOI: 10.1016/j.envpol.2021.117677
    This study aimed to analyze the environmental impacts of the oxidative desulfurization (ODS) process catalyzed by metal-free reduced graphene oxide (rGO) through life cycle assessment (LCA). The environmental impacts study containing the rGO production process, the ODS process, the comparison of different oxidants and solvents was developed. This study was performed by using ReCiPe 2016 V1.03 Hierarchist midpoint as well as endpoint approach and SimaPro software. For the production of 1 kg rGO, the results showed that hydrochloric acid (washing), sulfuric acid (mixing), hydrazine (reduction) and electricity were four main contributors in this process, and this process showed a significant impact on human health 14.21 Pt followed by ecosystem 0.845 Pt and resources 0.164 Pt. For the production of 1 kg desulfurized oil (400 ppm), main environmental impacts were terrestrial ecotoxicity (43.256 kg 1,4-DCB), global warming (41.058 kg CO2), human non-carcinogenic toxicity (19.570 kg 1,4-DCB) and fossil resource scarcity (13.178 kg oil), and the main contributors were electricity, diesel oil and acetonitrile. The whole ODS process also showed a greatest effect on human health. For two common oxidants hydrogen peroxide and oxygen used in ODS, hydrogen peroxide showed a greater impact than oxygen. On the other hand, for three common solvents employed in ODS, N-methyl-2-pyrrolidone had a more serious impact on human health followed by acetonitrile and N,N-dimethylformamide. As such, LCA results demonstrated the detailed environmental impacts originated from the catalytic ODS, hence elucidating systematic guidance for its future development toward practicality.
    Matched MeSH terms: Ecosystem*
  8. Davis HR, Bauer AM, Jackman TR, Nashriq I, DAS I
    Zootaxa, 2019 Jun 10;4614(2):zootaxa.4614.2.4.
    PMID: 31716380 DOI: 10.11646/zootaxa.4614.2.4
    The island of Borneo lies within one of the most biodiverse regions in the world. Despite this, its documented gekkonid diversity is not commensurate with other areas of Southeast Asia. The megadiverse genus Cyrtodactylus is especially underrepresented. Limestone-karst ecosystems, in particular, harbor many endemic Cyrtodactylus species, but only one karst-dwelling species is currently recognized from Borneo. This paper adds two additional karst-dwelling Cyrtodactylus species-C. muluensis sp. nov. and C. limajalur sp. nov.-from Sarawak, Malaysia. Cyrtodactylus muluensis sp. nov. is endemic to Gunung Mulu and is distinguished from its congeners by having a precloacal groove, 31-38 ventral scales, a maximum SVL of at least 88 mm, enlarged subcaudals, 19-20 subdigital lamellae, and a banded dorsal body pattern. Cyrtodactylus limajalur sp. nov. is endemic to the Serian region and is distinguished from its congeners by having 33-42 ventral scales, enlarged subcaudals, a precloacal pit, a maximum SVL of at least 94 mm, 5-6 enlarged femoral scales, 19-22 subdigital lamellae, and five distinct bands on the dorsum. Both species are phylogenetically distinct and deeply divergent from all other congeners. The description of two new karst-dwelling species highlights the need to conserve karst habitats and the endemic species they harbor.
    Matched MeSH terms: Ecosystem*
  9. Ashikin CN, Rozaimi M, Arina N, Fairoz M, Hidayah N
    Mar Pollut Bull, 2020 Jan;150:110628.
    PMID: 31740184 DOI: 10.1016/j.marpolbul.2019.110628
    Nitrogen is essential for seagrass productivity but excesses in nitrogen exposure contribute to declines in meadow health. This study reports baseline data of bulk nitrogen loadings and contents in surficial sediments and seagrass tissues to determine the extent of nitrogen inputs in meadows of Sungai Pulai estuary (Johor, Malaysia). The sediment contained relatively low nitrogen loadings (mean range of 91-94 g N m-2) with likely origins from land-based sources. At the meadow-level, Enhalus acoroides, Cymodocea serrulata and Thalassia hemprichii are the most important species as nitrogen sinks. The highest δ15N values of seagrass tissues were recorded for T. hemprichii (10.7 ± 0.4‰), which indicated an elevated capacity for internal recycling of nitrogen. The data demonstrates the provision of ecosystem services by the meadows in mitigating excess nitrogen imported into the estuary. Seagrasses health, however, needs to be at optimum levels for the effectiveness of the meadow as a nutrient sink.
    Matched MeSH terms: Ecosystem*
  10. Williams SH, Scriven SA, Burslem DFRP, Hill JK, Reynolds G, Agama AL, et al.
    Conserv Biol, 2020 08;34(4):934-942.
    PMID: 31840279 DOI: 10.1111/cobi.13450
    Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.
    Matched MeSH terms: Ecosystem*
  11. Mashlawi AM, Jordan HR, Crippen LT, Tomberlin JK
    Trop Biomed, 2020 Dec 01;37(4):973-985.
    PMID: 33612750 DOI: 10.47665/tb.37.4.973
    Buruli ulcer (BU) is a globally recognized, yet largely neglected tropical disease whose etiologic agent is Mycobacterium ulcerans. Although the exact mode of transmission is unclear, epidemiological evidence links BU incidence with slow-moving or stagnant, aquatic habitats, and laboratory-based experiments have shown disease manifestation in animals with dermal punctures. Therefore, hypotheses for transmission include contact with slowmoving aquatic habitats and associated biting aquatic insects, such as mosquitoes. Recent research demonstrated the toxin produced by M. ulcerans, mycolactone, is an attractant for adult mosquitoes seeking a blood-meal as well as oviposition sites. In the study presented here, we examined the impact of mycolactone at different concentrations on immature lifehistory traits of Aedes aegypti, which commonly occurs in the same environment as M. ulcerans. We determined percent egg hatch was not significantly different across treatments. However, concentration impacted the survivorship of larval mosquitoes to the adult stage (p < 0.001). Resulting adults also showed a slight preference, but not significant (p > 0.05), for oviposition in habitats contaminated with mycolactone suggesting a legacy effect.
    Matched MeSH terms: Ecosystem*
  12. Brooks CM, Ainley DG, Jacquet J, Chown SL, Pertierra LR, Francis E, et al.
    Science, 2022 Nov 04;378(6619):477-479.
    PMID: 36264826 DOI: 10.1126/science.add9480
    Climate change and fishing present dual threats.
    Matched MeSH terms: Ecosystem*
  13. Nakabayashi M, Kanamori T, Matsukawa A, Tangah J, Tuuga A, Malim PT, et al.
    Sci Rep, 2021 10 06;11(1):19819.
    PMID: 34615956 DOI: 10.1038/s41598-021-99341-6
    To propose proper conservation measures and to elucidate coexistence mechanisms of sympatric carnivore species, we assessed temporal activity patterns of the sympatric carnivore species using 37,379 photos collected for more than 3 years at three study sites in Borneo. We categorized activity patterns of nine carnivore species (one bear, three civets, two felids, one skunk, one mustelid, one linsang) by calculating the photo-capturing proportions at each time period (day, night, twilight). We then evaluated temporal activity overlaps by calculating the overlap coefficients. We identified six nocturnal (three civets, one felid, one skunk, one linsang), two diurnal (one felid, one mustelid), and one cathemeral (bear) species. Temporal activity overlaps were high among the nocturnal species. The two felid species possessing morphological and ecological similarities exhibited clear temporal niche segregation, but the three civet species with similar morphology and ecology did not. Broad dietary breadth may compensate for the high temporal niche overlaps among the nocturnal species. Despite the high species richness of Bornean carnivores, almost half are threatened with extinction. By comparing individual radio-tracking and our data, we propose that a long-term study of at least 2 or 3 years is necessary to understand animals' temporal activity patterns, especially for sun bears and civets, by camera-trapping and to establish effective protection measures.
    Matched MeSH terms: Ecosystem*
  14. Hosseinzadeh-Bandbafha H, Li C, Chen X, Peng W, Aghbashlo M, Lam SS, et al.
    J Hazard Mater, 2022 02 15;424(Pt C):127636.
    PMID: 34740507 DOI: 10.1016/j.jhazmat.2021.127636
    Waste cooking oil (WCO) is a hazardous waste generated at staggering values globally. WCO disposal into various ecosystems, including soil and water, could result in severe environmental consequences. On the other hand, mismanagement of this hazardous waste could also be translated into the loss of resources given its energy content. Hence, finding cost-effective and eco-friendly alternative pathways for simultaneous management and valorization of WCO, such as conversion into biodiesel, has been widely sought. Due to its low toxicity, high biodegradability, renewability, and the possibility of direct use in diesel engines, biodiesel is a promising alternative to mineral diesel. However, the conventional homogeneous or heterogeneous catalysts used in the biodiesel production process, i.e., transesterification, are generally toxic and derived from non-renewable resources. Therefore, to boost the sustainability features of the process, the development of catalysts derived from renewable waste-oriented resources is of significant importance. In light of the above, the present work aims to review and critically discuss the hazardous WCO application for bioenergy production. Moreover, various waste-oriented catalysts used to valorize this waste are presented and discussed.
    Matched MeSH terms: Ecosystem*
  15. Hassan R, Lee SY, Morni WZW
    ScientificWorldJournal, 2017;2017:1489360.
    PMID: 28695188 DOI: 10.1155/2017/1489360
    Sea star (class Asteroidea, phylum Echinodermata) is one of the most successful marine organisms inhabiting a wide range of habitats. As one of the key stone species, sea stars are responsible for maintaining much of the local diversity of species within certain communities. Malaysian Exclusive Economic Zone (EEZ) Resource Survey had been carried out from 16th Aug to 6th Nov 2015 and one of the invertebrate by-catch organisms is sea star Stellaster childreni Gray, 1840. This study documents morphological characters and diet of the sea star, besides providing brief descriptions of the habitats based on particle size analysis and vessel log data sheet. A total of 217 individuals had been examined throughout this study. Fragments of flora and fauna were found in the gut including Mollusca (gastropod, bivalves, and scaphopods), sponge seagrass, and seaweed as well as benthic Foraminifera. Stellaster childreni were found at depth of 45 m to 185 m in the South China Sea off Sarawak Malaysia, with various sea bottom substrata. Approximately 41% of S. childreni were found at a mixture of sandy and muddy substratum, followed by mixture of sandy and coral (19.3%), muddy substratum (17.5%), coral substratum (11.5%), and sandy areas (10.6%). The widely distributed sea star on different types of sea beds suggested healthy deep sea ecosystem; thus Malaysia should explore further potential fisheries resources in the EEZ off Sarawak coast.
    Matched MeSH terms: Ecosystem*
  16. Reddy LJ, Kumar PS, Pandrangi SL, Chikati R, Srinivasulu C, John A, et al.
    Appl Biochem Biotechnol, 2023 Apr;195(4):2743-2766.
    PMID: 36422804 DOI: 10.1007/s12010-022-04215-w
    The majority of the Earth's ecosystem is frigid and frozen, which permits a vast range of microbial life forms to thrive by triggering physiological responses that allow them to survive in cold and frozen settings. The apparent biotechnology value of these cold-adapted enzymes has been targeted. Enzymes' market size was around USD 6.3 billion in 2017 and will witness growth at around 6.8% CAGR up to 2024 owing to shifting consumer preferences towards packaged and processed foods due to the rising awareness pertaining to food safety and security reported by Global Market Insights (Report ID-GMI 743). Various firms are looking for innovative psychrophilic enzymes in order to construct more effective biochemical pathways with shorter reaction times, use less energy, and are ecologically acceptable. D-Galactosidase catalyzes the hydrolysis of the glycosidic oxygen link between the terminal non-reducing D-galactoside unit and the glycoside molecule. At refrigerated temperature, the stable structure of psychrophile enzymes adjusts for the reduced kinetic energy. It may be beneficial in a wide variety of activities such as pasteurization of food, conversion of biomass, biological role of biomolecules, ambient biosensors, and phytoremediation. Recently, psychrophile enzymes are also used in claning the contact lens. β-D-Galactosidases have been identified and extracted from yeasts, fungi, bacteria, and plants. Conventional (hydrolyzing activity) and nonconventional (non-hydrolytic activity) applications are available for these enzymes due to its transgalactosylation activity which produce high value-added oligosaccharides. This review content will offer new perspectives on cold-active β-galactosidases, their source, structure, stability, and application.
    Matched MeSH terms: Ecosystem*
  17. Zainuddin AH, Roslan MQJ, Razak MR, Yusoff FM, Haron DEM, Aris AZ
    Mar Pollut Bull, 2023 Jul;192:115019.
    PMID: 37201347 DOI: 10.1016/j.marpolbul.2023.115019
    Bisphenol analogues are prevalent globally because of rampant usage and imprecise processing techniques, prompting alerts about environmental and health hazards. The method employed in this study by solid phase extraction (SPE) and liquid chromatography-tandem quadrupole mass spectrometer (LC-MS/MS) for both quantification and qualitative analysis of the bisphenol compounds in the surface water samples. The coastal and estuarine surface water of Port Dickson and Lukut ranges from 1.32 ng/L to 1890.51 ng/L of bisphenol analogues. BPF mean concentration at 1143.88 ng/L is the highest, followed by BPA and BPS at 59.01 ng/L and 10.96 ng/L, respectively. Based on RQm for bisphenol analogues, the highest for BPF at 2.49 (RQ > 1, high risk), followed by BPS at 0.12 (0.1 
    Matched MeSH terms: Ecosystem*
  18. Alebraheem J, Abu-Hassan Y
    J Math Biol, 2023 Apr 27;86(5):84.
    PMID: 37103566 DOI: 10.1007/s00285-023-01914-8
    A characteristic of ecosystems is the existence of manifold of independencies which are highly complex. Various mathematical models have made considerable contributions in gaining a better understanding of the predator-prey interactions. The main components of any predator-prey models are, firstly, how the different population classes grow and secondly, how the prey and predator interacts. In this paper, the two populations' growth rates obey the logistic law and the carrying capacity of the predator depends on the available number of prey are considered. Our aim is to clarify the relationship between models and Holling types functional and numerical responses in order to gain insights into predator interferences and to answer an important question how competition is carried out. We consider a predator-prey model and a two-predator one-prey model to explain the idea. The novel approach is explained for the mechanism measurement of predator interference through depending on numerical response. Our approach gives good correspondence between an important real data and computer simulations.
    Matched MeSH terms: Ecosystem*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links