Displaying publications 141 - 160 of 266 in total

Abstract:
Sort:
  1. Karafas S, Teng ST, Leaw CP, Alves-de-Souza C
    Harmful Algae, 2017 09;68:128-151.
    PMID: 28962975 DOI: 10.1016/j.hal.2017.08.001
    The genus Amphidinium is an important group of athecated dinoflagellates because of its high abundance in marine habitats, its member's ability to live in a variety of environmental conditions and ability to produce toxins. Furthermore, the genus is of particular interest in the biotechnology field for its potential in the pharmaceutical arena. Taxonomically the there is a history of complication and confusion over the proper identities and placements of Amphidinium species due to high genetic variability coupled with high morphological conservation. Thirteen years has passed since the most recent review of the group, and while many issues were resolved, some remain. The present study used microscopy, phylogenetics of the 28S region of rDNA, secondary structure of the ITS2 region of rDNA, compensatory base change data, and cytotoxicity data from Amphidinium strains collected world-wide to elucidate remaining confusion. This holistic approach using multiple lines of evidence resulted in a more comprehensive understanding of the morphological, ecological, and genetic characteristics that are attributed to organisms belonging to Amphidinium, including six novel species: A. fijiensis, A. magnum, A. paucianulatum, A. pseudomassartii, A. theodori, and A. tomasii.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics; DNA, Ribosomal Spacer/chemistry
  2. Li J, Shimizu K, Akasako H, Lu Z, Akiyama S, Goto M, et al.
    Bioresour Technol, 2015 Jan;175:463-72.
    PMID: 25459856 DOI: 10.1016/j.biortech.2014.10.047
    This study revealed the biotic and abiotic parameters driving the variations in microcystins (MCs) biodegradability of a practical biological treatment facility (BTF). Results showed that similar trends of seasonal variation were seen for microcystin-LR (MCLR) biodegradability of biofilms on the BTF and indigenous MCLR-degrader population, where both peaks co-occurred in October, following the peaks of natural MCLR concentration and water temperature observed in August. The lag period might be required for accumulation of MCLR-degraders and MCLR-degrading enzyme activity. The MCLR-degrader population was correlated to temperature, MCLR and chlorophyll-a concentration in water where the biofilms submerged, indicating that these abiotic and biotic parameters exerted direct and/or indirect influences on seasonal variation in MCLR-biodegradability. In comparison, no effect of other co-existing MCs on biodegradation of one MC was observed. However, proliferation of MC-degraders along biodegradation processes positively responded to total amount of MCs, suggesting that multiple MCs contributed additively to MC-degrader proliferation.
    Matched MeSH terms: DNA, Ribosomal
  3. Philip N, Affendy NB, Masri SN, Yuhana MY, Than LTL, Sekawi Z, et al.
    PLoS One, 2020;15(9):e0239069.
    PMID: 32915919 DOI: 10.1371/journal.pone.0239069
    The diagnosis of leptospirosis remains a challenge due to its non-specific symptoms and the biphasic nature of the illness. A comprehensive diagnosis that includes both molecular (polymerase chain reaction (PCR)) and serology is vital for early detection of leptospirosis and to avoid misdiagnosis. However, not all samples could be subjected to both tests (serology and molecular) due to budget limitation, infrastructure, and technical expertise at least in resource-limited countries. We evaluated the usefulness of testing the clinically suspected leptospirosis cases with both techniques on all samples collected from the patients on the day of admission. Among the 165 patient's blood/serum samples tested (from three hospitals in Central Malaysia), 43 (26%) showed positivity by microscopic agglutination test (MAT), 63 (38%) by PCR, while 14 (8%) were positive by both MAT and PCR. For PCR, we tested two molecular targets (lipL32 by qPCR and 16S rDNA or rrs by nested PCR) and detected lipL32 in 47 (29%) and rrs gene in 63 (38%) patients. The use of more than one target gene for PCR increased the detection rates. Hence, a highly sensitive multiplex PCR targeting more than one diagnostic marker is recommended for the early detection of Leptospira in suspected patients. When the frequencies for positivity detected either by MAT or PCR combined, leptospirosis was diagnosed in a total of 92 (56%) patients, a higher frequency compared to when samples were only tested by a single method (MAT or PCR). The results from this study suggest the inclusion of both serology and molecular methods for every first sample irrespective of the days post-onset of symptoms (DPO) collected from patients for early diagnosis of leptospirosis.
    Matched MeSH terms: DNA, Ribosomal
  4. Loong SK, Mahfodz NH, Wali HA, Talib SA, Nasrah SN, Wong PF, et al.
    J Vet Med Sci, 2016 May 3;78(4):715-7.
    PMID: 26782013 DOI: 10.1292/jvms.15-0472
    Accurate identification and separation of non-classical Bordetella species is very difficult. These species have been implicated in animal infections. B. hinzii, a non-classical Bordetella, has been isolated from mice in experimental facilities recently. We isolated and characterized one non-classical Bordetella isolate from the trachea and lung of an ICR mouse. Isolate BH370 was initially identified as B. hinzii by 16S ribosomal DNA and ompA sequencing. Additionally, isolate BH370 also displayed antimicrobial sensitivity profiles similar to B. hinzii. However, analyses of nrdA sequences determined its identity as Bordetella genogroup 16. The isolation of BH370 from a healthy mouse suggests the possibility of it being a commensal. The nrdA gene was demonstrated to possess greater phylogenetic resolution as compared with 16S ribosomal DNA and ompA for the discrimination of non-classical Bordetella species.
    Matched MeSH terms: DNA, Ribosomal
  5. Han Z, Sun J, Lv A, Sung Y, Sun X, Shi H, et al.
    AMB Express, 2018 Apr 02;8(1):52.
    PMID: 29610998 DOI: 10.1186/s13568-018-0578-3
    A modified genomic DNA extraction method named the combination of lysozyme and ultrasonic lysis (CLU) method was used to analyze the fish intestinal microflora. In this method, the physical disruption and chemical lysis steps were combined, and some parameters in the key steps were adjusted. In addition, the results obtained by this method were compared with the results obtained by the Zirmil-beating cell disruption method and the QIAamp Fast DNA Stool Mini Kit. The OD260/OD280ratio and concentration of the DNA extracted using the CLU method were 2.02 and 282.8 µg/µL, respectively; when the incubation temperatures for lysozyme and RNase were adjusted to 37 °C, those values were 2.08 and 309.8 µg/µL, respectively. On the agarose gel, a major high-intensity, discrete band of more than 10 kb was found for the CLU method. However, the smearing intensity of degraded DNA was lower when the incubation temperatures were 60 °C for lysozyme and 30 °C for RNase than when incubation temperatures of 37 °C for lysozyme and 37 °C for RNase were used. The V3 variable region of the prokaryotic 16S rDNA was amplified, and an approximately 600-bp fragment was observed when the DNA extracted using the CLU method was used as a template. The CLU method is simple and cost effective, and it yields high-quality, unsheared, high-molecular-weight DNA, which is comparable to that obtained with a commercially available kit. The extracted DNA has potential for applications in critical molecular biology techniques.
    Matched MeSH terms: DNA, Ribosomal
  6. Cheng TH, Ismail N, Kamaruding N, Saidin J, Danish-Daniel M
    Biotechnol Rep (Amst), 2020 Sep;27:e00482.
    PMID: 32514406 DOI: 10.1016/j.btre.2020.e00482
    Industrial enzymes are important for various biotechnological applications. Currently, the diversity of industrial enzymes-producing marine bacteria from Malaysia remains mostly unknown. This study investigated the diversity of industrial enzyme-producing marine bacteria from culture collections at the Institute of Marine Biotechnology, Universiti Malaysia Terengganu. Out of 200 bacterial isolates revived, 163 bacteria isolate were successfully growth. Marine bacteria produced enzymes with total scoring higher than four were selected for molecular identification using 16S rDNA. About 161 bacteria isolate secreted amylase (68.7 %), lipase (88.3 %) and protease (68.7 %). The phylogenetic analysis led to the identification of three major phyla, namely Proteobacteria, Firmicutes and Bacteroidetes. These phyla were differentiated into nine genera consisted of Bacillus, Chryseomicrobium, Photobacterium, Pseudoalteromonas, Ruegeria, Shewanella, Solibacillus, Tenacibaculum and Vibrio. Genetic variation was more likely to occur within similar marine bacteria species. The microbial community was found to affect the production of industrial enzymes and the diversity of marine bacteria.
    Matched MeSH terms: DNA, Ribosomal
  7. Chen XM, Pang JX, Huang CX, Lundholm N, Teng ST, Li A, et al.
    J Phycol, 2021 Feb;57(1):335-344.
    PMID: 33174223 DOI: 10.1111/jpy.13101
    To explore the species diversity and toxin profile of Pseudo-nitzschia, monoclonal strains were established from Chinese southeast coastal waters. The morphology was examined under light and transmission electron microscopy. The internal transcribed spacer region of ribosomal DNA was sequenced for phylogenetic analyses, and the secondary structure of ITS2 was predicted and compared among allied taxa. A combination of morphological and molecular data showed the presence of two new species, Pseudo-nitzschia hainanensis sp. nov. and Pseudo-nitzschia taiwanensis sp. nov. Pseudo-nitzschia hainanensis was characterized by a dumpy-lanceolate valve with slightly blunt apices and a central nodule, as well as striae comprising two rows of poroids. Pseudo-nitzschia taiwanensis was characterized by a slender-lanceolate valve, and striae comprising one row of split poroids. The poroid structure mainly comprised two sectors. Both taxa constituted their own monophyletic lineage in the phylogenetic analyses inferred from ITS2 rDNA and were well differentiated from other Pseudo-nitzschia species. Morphologically, P. hainanensis and P. taiwanensis could be assigned to the Pseudo-nitzschia delicatissima and the Pseudo-nitzschia pseudodelicatissima complex, respectively. Particulate domoic acid was measured using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), but no detectable pDA was found. With the description of the two new species, the species diversity of genus Pseudo-nitzschia reaches 58 worldwide, among which 31 have been recorded from Chinese coastal waters.
    Matched MeSH terms: DNA, Ribosomal
  8. Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K
    J Pharm Biomed Anal, 2021 Jan 30;193:113702.
    PMID: 33160220 DOI: 10.1016/j.jpba.2020.113702
    Bioactive compounds from endophytic fungi exhibit diverse biological activities which include anticancer effect. Capitalising on the abundance of unexplored endophytes that reside within marine plants, this study assessed the anticancer potential of ethyl acetate endophytic fungal extracts (i.e. MBFT Tip 2.1, MBL 1.2, MBS 3.2, MKS 3 and MKS 3.1) derived from leaves, stem and fruits of marine plants that grow along Morib Beach, Malaysia. For identification of endophytic fungi, EF 4/ EF 3 and ITS 1/ ITS 4 PCR primer pairs were used to amplify the fungal 18S rDNA sequence and ITS region sequence, respectively. The resultant sequences were subjected to similarity search via the NCBI GenBank database. High-performance thin layer chromatography (HPTLC) hyphenated with bioassays was used to characterise the extracts in terms of their phytochemical profiles and bioactivity. Microchemical derivatisation was used to assess polyphenolic and phytosterol/ terpenoid content whereas biochemical derivatisation was used to establish antioxidant activities and α-amylase enzyme inhibition. The sulforhodamine B (SRB) assay was used to assess the anticancer effect of the extracts against HCT116 (a human colorectal cancer cell line). The present results indicated MBS 3.2 (Penicillium decumbens) as the most potent extract against HCT116 (IC50 = 0.16 μg/mL), approximately 3-times more potent than 5-flurouracil (IC50 = 0.46 μg/mL). Stepwise multiple regression method suggests that the anticancer effect of MBS 3.2 could be associated with high polyphenolic content and antioxidant potential. Nonlinear regression analysis confirmed that low to moderate α-amylase inhibition exhibits maximum anticancer activity. Current findings warrant further in-depth mechanistic studies.
    Matched MeSH terms: DNA, Ribosomal
  9. Mahmodi F, Kadir JB, Wong MY, Nasehi A, Puteh A, Soleimani N
    Plant Dis, 2013 Jun;97(6):841.
    PMID: 30722625 DOI: 10.1094/PDIS-10-12-0944-PDN
    Soybean (Glycine max L.) is one of the most economically important crops in the world, and anthracnose is known to infect soybean in most countries. Colletotrichum truncatum is the common pathogen causing anthracnose of soybean. However, at least five species of Colletotrichum have been reported on soybean worldwide (2). In July 2010, anthracnose symptoms were observed on soybean in the experimental fields of the agriculture station in Ladang Dua, University Putra Malaysia located in Selangor state of Malaysia. Symptoms were initially observed on a few plants randomly within one field, but after 4 weeks, the disease was found in two additional fields scattered across an area of 1 km2. Pinkish-brown lesions were observed on the pods, and the formation of dark lesions on the leaves and stems was sometimes followed by stem girdling, dieback, and distorted growth. At later stages, numerous epidermal acervuli developed in the lesions, and mucilaginous conidial masses appeared during periods of high relative humidity. Conidia produced in acervuli were straight, cylindric, hyaline, and aseptate, with both ends rounded. Conidia measured (mean ± SD) 14.2 ± 0.6 × 3.6 ± 0.7 μm, and the L/W ratio was 3.95 μm. Six isolates of the fungus were obtained and identified as C. gloeosporioides on the basis of morphological characterization (3). The isolates were deposited in the University Putra of Malaysia Culture Collection (UPMCC). PDA cultures were white at first and subsequently became grayish to pink to reddish-brown. Amplification and sequence analysis of coding and none-coding regions of the ITS-rDNA (GenBank JX669450), actin (JX827430), β-tubulin (JX827454), histone (JX827448), chitin synthase (JX827436), and glyceraldehyde-3-phosphate dehydrogenase (JX827442) obtained from the representative isolate, CGM50, aligned with deposited sequences from GenBank and revealed 99 to 100% sequence identity with C. gloeosporioides strains (JX258757, JX009790, GQ849434, HM575301, JQ005413, and JX00948 from GenBank). One representative isolate, CGM50, was used for pathogenicity testing. Four non-infected detached leaves and pods of 24-day-old G. max var. Palmetto were surface-sterilized and inoculated by placing 10 μl of a conidial suspension (106 conidia ml-1) using either the wound/drop or non-wound/drop method (4), with 10 μl distilled water as a negative control. Leaves and pods were incubated at 25°C, 98% RH. The experiment was repeated twice. Five days after inoculation, the development of typical field symptoms, including acervuli formation, occurred on the leaves and pods of inoculated plants, but not on the negative controls. A fungus with the same colony and conidial morphology as CGM50 was recovered from the lesions on the inoculated leaves and pods. Anthracnose caused by C. gloeosporioides on soybean plants has been reported previously in different countries, but not in Malaysia (3). Geographically, the climate of Malaysia is highly conducive to maintain and cause outbreaks of anthracnose all year round; thus, the development of management recommendations will be inevitable for anthracnose control. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on soybean in Malaysia. References: (1) U. Damm et al. Fungal Diversity 39:45, 2009. (2) S. L. Chen et al. J. Phytopathol. 154:654, 2006. (3) B. C. Sutton. The Genus Glomerella and its Anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (4) P. P. Than et al. Plant Pathol. 57:562, 2008. ERRATUM: A correction was made to this Disease Note on May 19, 2014. The author N. Soleimani was added.
    Matched MeSH terms: DNA, Ribosomal
  10. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722190 DOI: 10.1094/PDIS-10-12-0902-PDN
    In June 2011, lettuce (Lactuca sativa) plants cultivated in major lettuce growing areas in Malaysia, including the Pahang and Johor states, had extensive leaf spots. In severe cases, disease incidence was recorded more than 80%. Symptoms on 50 observed plants initially were as water soaked spots (1 to 2 mm in diameter) on leaves, and then became circular spots spreading over much of the leaves. In this research, main lettuce growing areas infected by the pathogen in the mentioned states were investigated and the pathogen was isolated onto potato dextrose agar (PDA). Colonies observed were greyish green to light brown. Single conidia were formed at the terminal end of conidiophores that were 28.8 to 40.8 μm long and 11.0 to 19.2 μm wide, and 2 to 7 transverse and 1 to 4 longitudinal septa. To produce conidia, the fungus was grown on potato carrot agar (PCA) and V8 juice agar media under 8-h/16-h light/dark photoperiod. Fourteen isolates were identified Stemphylium solani based on morphological criteria described by Kim et al. (1). To confirm morphological characterization, DNA of the fungus was extracted from mycelium and PCR was done using universal primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'), which amplified the internal transcribed spacer (ITS) region of rDNA (2). The sequencing result was subjected to BLAST analysis which was 99% identical to the other published sequences in the GenBank database (GenBank Accession Nos. AF203451 and HQ840713). The nucleotide sequence was deposited in GenBank under Accession No. JQ736022. Pathogenicity testing of representative isolate was done using 20 μl of conidial suspension with a concentration of 1 × 105/ml in droplets (three drops on each leaf) on four detached 45-day-old lettuce leaves cv. BBS012 (3). Fully expended leaves were placed on moist filter paper in petri dishes and were incubated in humid chambers at 25°C. The leaves inoculated with sterile water served as control. After 7 days, disease symptoms were observed, which were similar to those symptoms collected in infected fields and the fungus was reisolated and confirmed as S. solani based on morphological criteria (1) and molecular characterization (2). Control leaves remained healthy. Pathogenicity testing was completed twice. To our knowledge, this is the first report of S. solani on lettuce in Malaysia and it may become a serious problem because of its broad host range, variability in pathogenic isolates, and prolonged active phase of the disease cycle. Previous research has shown that S. solani is a causal agent of gray leaf spot on lettuce in China (4). References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Current Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) F. L. Tai. Sylloge Fungorum Sinicorum, Sci. Press, Acad. Sin., Peking, 1979.
    Matched MeSH terms: DNA, Ribosomal
  11. Mahmodi F, Kadir JB, Wong MY, Nasehi A, Soleimani N, Puteh A
    Plant Dis, 2013 May;97(5):687.
    PMID: 30722185 DOI: 10.1094/PDIS-09-12-0843-PDN
    Bok choy (Brassica chinensis L.) is a temperate vegetable grown in the cool highland areas of Malaysia. In June 2010, vegetable growing areas of the Cameron Highlands, located in Pahang State, Malaysia, were surveyed for the prevalence of anthracnose disease caused by Colletotrichum species. Diseased samples were randomly collected from 12 infested fields. Anthracnose incidence on bok choy varied from 8 to 36% in different nursery fields. Disease symptoms initially appeared as small water-soaked spots scattered on the leaf petioles of young plants. As these spots increased in size, they developed irregular round spots that turned to sunken grayish brown lesions surrounded by brownish borders. When the lesions were numerous, leaves collapsed. Pale buff to salmon conidial mass and acervuli were observed on well-developed lesions. The acervuli diameter varied in size from 198 to 486 μm, averaging 278.5 μm. Morphological and cultural characteristics of the fungus were examined on potato dextrose agar incubated for 7 days at 25 ± 2°C under constant fluorescent light. Vegetative mycelia were hyaline, septate, branched, and 2 to 7 μm in diameter. The color of the fungal colonies was grayish brown. Conidia were hyaline, aseptate, falcate, apices acute, and 21.8 to 28.5 × 2.6 to 3.4 mm. Setae were pale brown to dark brown, 75 to 155 μm long, base cylindrical, and tapering towards the acute tip. Appressoria were solitary or in dense groups, light to dark brown, entire edge to lobed, roundish to clavate, 6.5 to 14 × 5.8 to 8.6 μm, averaging 9.2 × 6.8 μm, and had a L/W ratio of 1.35. Based on the keys outlined by Mordue 1971 (2) and Sutton 1980 (3), the characteristics of this fungus corresponded to Colletotrichum capsici. Sequence analysis of the ITS-rDNA obtained from the Malaysian strain CCM3 (GenBank Accession No. JQ685746) using primers ITS5 and ITS4 (1) when aligned with deposited sequences from GenBank revealed 99 to 100% sequence identity with C. capsici strains (DQ286158, JQ685754, DQ286156, GQ936210, and GQ369594). A representative strain CCM3 was used for pathogenicity testing. Four non-infected detached leaves of 2-week-old B. chinensis were surface-sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) using either the wound/drop or non-wound/drop method, and distilled water was used as a control (1). Leaves were incubated at 25°C, 98% RH. The experiment was repeated twice. Five days after inoculation, typical anthracnose symptoms with acervuli formation appeared on the surface of tissues inoculated with the spore suspension, but not on the water controls. A fungus with the characteristics of C. capsici was recovered from the lesions on the inoculated leaves. Anthracnose caused by C. capsici has been reported on different vegetable crops, but not on bok choy (3). To the best of our knowledge, this is the first report of C. capsici causing anthracnose on bok choy in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) J. E. M. Mordue. CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycol. Inst., Kew, UK. 1971. (3) B. C. Sutton. The Genus Glomerella and its anamorph Colletotrichum. CAB International, Wallingford, UK, 1992. (4) P. P. Than et al. Plant Pathol. 57:562, 2008.
    Matched MeSH terms: DNA, Ribosomal
  12. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722195 DOI: 10.1094/PDIS-10-12-0901-PDN
    In 2011, a severe gray leaf spot was observed on eggplant (Solanum melongena) in major eggplant growing areas in Malaysia, including the Pahang, Johor, and Selangor states. Disease incidence was >70% in severely infected areas of about 150 ha of eggplant greenhouses and fields examined. Symptoms initially appeared as small (1 to 5 mm diameter), brownish-black specks with concentric circles on the lower leaves. The specks then coalesced and developed into greyish-brown, necrotic lesions, which also appeared on the upper leaves. Eventually, the leaves senesced and were shed. Tissue cut from the edges of leaf spots were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterilized water, dried, and incubated on potato dextrose agar (PDA). Fungal colonies were greyish green to light brown, and produced a yellow pigment. Single, muriform, brown, oblong conidia formed at the terminal end of each conidiophore, were each 21.6 to 45.6 μm long and 11.5 to 21.6 μm wide, and contained 2 to 7 transverse and 1 to 4 longitudinal septa. The conidiophores were tan to light brown and ≤220 μm long. Based on these morphological criteria, 25 isolates of the fungus were identified as Stemphylium solani (1). To produce conidia in culture, 7-day-old single-conidial cultures were established on potato carrot agar (PCA) and V8 juice agar media under an 8-h/16-h light/dark photoperiod at 25°C (4). Further confirmation of the identification was obtained by molecular characterization in which fungal DNA was extracted and the internal transcribed spacer (ITS) region of ribosomal DNA amplified using primers ITS5 and ITS4 (2), followed by direct sequencing. A BLAST search in the NCBI database revealed that the sequence was 99% identical with published ITS sequences for two isolates of S. solani (Accession Nos. AF203451 and HQ840713). The amplified ITS region was deposited in GenBank (JQ736023). Pathogenicity testing of a representative isolate was performed on detached, 45-day-old eggplant leaves of the cv. 125066-X under laboratory conditions. Four fully expanded leaves (one wounded and two non-wounded leaflets/leaf) were placed on moist filter paper in petri dishes, and each leaflet inoculated with a 20-μl drop of a conidial suspension containing 1 × 105 conidia/ml in sterilized, distilled water (3). The leaves were wounded by applying pressure to leaf blades with the serrated edge of forceps. Four control leaves were inoculated similarly with sterilized, distilled water. Inoculated leaves were incubated in humid chambers at 25°C with 95% RH and a 12-h photoperiod. After 7 days, symptoms similar to those observed in the original fields developed on both wounded and non-wounded inoculated leaves, but not on control leaves, and S. solani was reisolated consistently from the symptoms using the same method as the original isolations. Control leaves remained asymptomatic and the fungus was not isolated from these leaves. The pathogenicity testing was repeated with similar results. To our knowledge, this is the first report of S. solani on eggplant in Malaysia. References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Curr. Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiv. Series 6:775, 2007.
    Matched MeSH terms: DNA, Ribosomal
  13. Keith LM
    Plant Dis, 2008 May;92(5):835.
    PMID: 30769617 DOI: 10.1094/PDIS-92-5-0835B
    Rambutan (Nephelium lappaceum Linn.) is a tropical, exotic fruit that has a rapidly expanding niche market in Hawaii. Diseased rambutan fruit was commonly observed in orchards in the Hilo and Kona districts of Hawaii Island during 2006. In surveys conducted in January, symptoms appeared as dark brown-to-black spots on mature fruit and blackened areas at the base of spinterns (hair-like projections) of mature and immature fruits. Pieces of infected fruit (cv. R167) were surface sterilized for 2 min in 0.5% NaOCl, plated on potato dextrose agar, and incubated at 24 ± 1°C for 7 days. The fungus growing on PDA was pale buff with sparse, aerial mycelium and acervuli containing black, slimy spore masses. All isolates had five-celled conidia. Apical and basal cells were hyaline, while the three median cells were olivaceous; the upper two were slightly darker than the lower one. Conidia (n = 40) were 20.3 ± 0.1 × 6.8 ± 0.1 μm. There were typically three apical appendages averaging 16.8 ± 0.2 μm long. The average basal appendage was 3.8 ± 0.1 μm long. The fungus was initially identified as Pestalotiopsis virgatula (Kleb.) Stey. on the basis of conidial and cultural characteristics (3). The identification was confirmed by molecular analysis of the 5.8S subunit and flanking internal transcribed spacers (ITS1 and ITS2) of rDNA amplified from DNA extracted from single-spore cultures with the ITS1/ITS4 primers (1,4) and sequenced (GenBank Accession No. EU047943). To confirm pathogenicity, agar pieces, 3 mm in diameter, from 7-day old cultures were used as inoculum. Five mature fruit from rambutan cv. R134 were rinsed with tap water, surface sterilized with 0.5% NaOCl for 2 min, wounded with a needle head, inoculated in the laboratory, and maintained in a moist chamber for 7 days. Lesions resembling symptoms that occurred in the field were observed on fruit after 7 days. No symptoms were observed on fruit inoculated with agar media. The fungus reisolated from diseased fruit was identical to the original isolates, confirming Koch's postulates. The disease appears to be widespread in Hawaii. Preharvest symptoms may have the potential to affect postharvest fruit quality if fruits are not stored at the proper conditions. Pestalotiopsis spp. have been reported on rambutan in Malaysia, Brunei, and Australia (2). To my knowledge, this is the first report of P. virgatula causing fruit spots on rambutan in Hawaii. References: (1) G. Caetano-Annolles et al. Curr. Genet. 39:346, 2001. (2) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. On-line publication. ARS, USDA, 2007. (3) E. F. Guba. Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge, MA, 1961. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. 1990.
    Matched MeSH terms: DNA, Ribosomal
  14. Thoha H, Muawanah, Bayu Intan MD, Rachman A, Sianturi OR, Sidabutar T, et al.
    Front Microbiol, 2019;10:306.
    PMID: 30846977 DOI: 10.3389/fmicb.2019.00306
    Margalefidinium polykrikoides, an unarmored dinoflagellate, was suspected to be the causative agent of the harmful algal blooms - associated with massive fish mortalities - that have occurred continually in Lampung Bay, Indonesia, since the first bloom event in October 2012. In this study, after examination of the morphology of putative M. polykrikoides-like cysts sampled in bottom sediments, cyst bed distribution of this harmful species was explored in the inner bay. Sediment samples showed that resting cysts, including several morphotypes previously reported as M. polykrikoides, were most abundant on the northern coast of Lampung Bay, ranging from 20.6 to 645.6 cysts g-1 dry sediment. Molecular phylogeny inferred from LSU rDNA revealed that the so-called Mediterranean ribotype was detected in the sediment while M. polykrikoides motile cells, four-cell chain forming in bloom conditions, belonged to the American-Malaysian ribotype. Moreover, hyaline cysts, exclusively in the form of four-cell chains, were also recorded. Overall, these results unequivocally show that the species M. polykrikoides is abundantly present, in the form of vegetative cells, hyaline and resting cysts in an Indonesian area.
    Matched MeSH terms: DNA, Ribosomal
  15. Okomoda VT, Nurul ANA, Danish-Daniel AM, Oladimeji AS, Abol-Munafi AB, Alabi KI, et al.
    Data Brief, 2020 Oct;32:106120.
    PMID: 32817873 DOI: 10.1016/j.dib.2020.106120
    The Labroides dimidiatus is known as the "doctor fish" because of its role in removing parasites and infectious pathogens from the body of other fishes. This important role played both in wild and captive conditions could represent a novel form of parasitic transmission process mediated by the cleaning activity of the fish. Yet, there is a paucity of data on the microflora associated with this fish which is important for tracking disease infection and generally monitoring the health status of the fish. This article, therefore, represents the first dataset for the microbiota composition of wild and captive L. dimidiatus. Wild fish samples and carriage water were gotten in Terengganu Malaysia around the corals of the Karah Island. The captive sample, however, was obtained from well-known ornamental fish suppliers in Terengganu Malaysia. Thereafter, bacteria present on the skin, in the stomach and the aquarium water were enumerated using culture-independent approaches and Next Generation Sequencing (NGS) technology. Data obtained from the three metagenomic libraries using NGS analysis gave 1,426,740 amplicon sequence reads which are composed of 508 operational taxonomic units (OTUs) for wild samples and 3,238,564 valid reads and 828 OTUs for captive samples. All sequence reads were deposited in the GeneBank (Accession numbers SAMN14260247, SAMN14260248, SAMN14260249, SAMN14260250, SAMN14260251, and SAMN14260252). The dataset presented is associated with the research article "16S rDNA-Based Metagenomic Analysis of Microbial Communities Associated with Wild Labroides dimidiatus From Karah Island, Terengganu, Malaysia" [1]. The microbiota data presented in this article can be used to monitor the health and wellbeing of the ornamental fish, especially under captivity, hence preventing possible cross-infection.
    Matched MeSH terms: DNA, Ribosomal
  16. Tamadoni Jahromi S, Othman AS, Rosazlina R
    Biochem Genet, 2018 Aug 12.
    PMID: 30099639 DOI: 10.1007/s10528-018-9884-3
    There are two morphotypes of Penaeus semisulcatus described hitherto in the Persian Gulf, namely the banded and non-banded antennae morphotypes. In this study, we used morphometric measurements and two mitochondrial genes (16S rRNA and cytochrome oxidase subunit I-COI) to assess relationships between the two morphotypes of P. semisulcatus. Out of 25 morphological characters examined, 10 characters were found significantly different between the two morphotypes when tested against separate sexes or both sexes combined. Results from the 16S rRNA and COI sequence analysis of two morphotypes of P. semisulcatus morphotype showed up to 6% and 17% sequence divergence, respectively. The 16S rDNA and COI sequences of the non-banding morphotype were not only very different to those of the banding morphotype but was also very different to all other Penaeus species (i.e., P. monodon, P. merguiensis, and P. indicus) included in the study. Both parsimony and Neighbor-Joining trees based on 16S rDNA and COI sequences provide similar tree topology that clearly separated the two morphotypes into two distinct groups. Based on these findings, we propose the two morphotypes of P. semisulcatus to be relegated as two sympatric species.
    Matched MeSH terms: DNA, Ribosomal
  17. Borzák R, Borkhanuddin MH, Cech G, Molnár K, Hallett SL, Székely C
    Int J Parasitol Parasites Wildl, 2021 Aug;15:112-119.
    PMID: 33996443 DOI: 10.1016/j.ijppaw.2021.04.004
    Thelohanellus nikolskii, Achmerov, 1955 is a well-known myxozoan parasite of the common carp (Cyprinus carpio L.). Infection regularly manifests in numerous macroscopic cysts on the fins of two to three month-old pond-cultured carp fingerlings in July and August. However, a Thelohanellus infection is also common on the scales of two to three year-old common carp in ponds and natural waters in May and June. Based on myxospore morphology and tissue specificity, infection at both sites seems to be caused by the same species, namely T. nikolskii. This presumption was tested with molecular biological methods: SSU rDNA sequences of myxospores from fins of fingerlings and scales of older common carp were analysed and compared with each other and with related species available in GenBank. Sequence data revealed that the spores from the fins and scales represent the same species, T. nikolskii. Our study revealed a dichotomy in both infection site and time in T. nikolskii-infections: the fins of young carp are infected in Summer and Autumn, whereas the scales of older carp are infected in Spring. Myxosporean development of the species is well studied, little is known, however about the actinosporean stage of T. nikolskii. A previous experimental study suggests that aurantiactinomyxon actinospores of this species develop in Tubifex tubifex, Müller, 1774. The description included spore morphology but no genetic sequence data (Székely et al., 1998). We examined >9000 oligochaetes from Lake Balaton and Kis-Balaton Water Reservoire searching for the intraoligochaete developmental stage of myxozoans. Five oligochaete species were examined, Isochaetides michaelseni Lastochin, 1936, Branchiura sowerbyi Beddard, 1892, Nais sp., Müller, 1774, Dero sp. Müller, 1774 and Aelosoma sp. Ehrenberg, 1828. Morphometrics and SSU rDNA sequences were obtained for the released actinospores. Among them, from a single Nais sp., the sequence of an aurantiactinomyxon isolate corresponded to the myxospore sequences of T. nikolskii.
    Matched MeSH terms: DNA, Ribosomal
  18. Pin LC, Teen LP, Ahmad A, Usup G
    Mar Biotechnol (NY), 2001 May;3(3):246-55.
    PMID: 14961362
    The genus Ostreopsis is an important component of benthic and epiphytic dinoflagellate assemblages in coral reefs and seaweed beds of Malaysia. Members of the species may produce toxins that contribute to ciguatera fish poisoning. In this study, two species have been isolated and cultured, Ostreopsis ovata and Ostreopsis lenticularis. Analyses of the 5.8S subunit and internal transcribed spacer regions ITS1 and ITS2 of the ribosomal RNA gene sequences of these two species showed that they are separate species, consistent with morphological designations. The nucleotide sequences of the 5.8S subunit and ITS1 and ITS2 regions of the rRNA gene were also used to evaluate the interpopulation and intrapopulation genetic diversity of O. ovata found in Malaysian waters. Results showed a low level of sequence divergence within populations. At the interpopulation level, the rRNA gene sequence distinguished two groups of genetically distinct strains, representative of a Malacca Straits group (isolates from Port Dickson) and a South China Sea group (isolates from Pulau Redang and Kota Kinabalu). Part of the sequences in the ITS regions may be useful in the design of oligonucleotide probes specific for each group. Results from this study show that the ITS regions can be used as genetic markers for taxonomic, biogeographic, and fine-scale population studies of this species.
    Matched MeSH terms: DNA, Ribosomal Spacer
  19. Yap, Wei Boon, Rina Anak Sujang, Tan, Seng Toong
    MyJurnal
    Many studies have shown that probiotic strains added to a number of probiotic products are not compatible to that of
    claimed. It is thus of note to validate probiotic strains added to probiotic products. In this study, three probiotic drinks,
    A, B and C, were cultured on MRS agar and the number of bacterial colonies was enumerated. The bacterial counts
    recovered from A (9.3 ± 6.9 log CFU/ml) and C (9.0 ± 6.9 log CFU/ml) were signifi cantly higher than B (5.2 ± 3.5 log
    CFU/ml) and achieved the minimal amount recommended for probiotic bacteria. All of the isolates appeared as gram
    positive rods microscopically and were proven to be catalase negative. However, there were only A1, A2, B4 and C1 that
    were highly tolerant to the gastrointestinal pH 3 to 6. The four isolates produced and secreted antimicrobial substances
    which inhibited the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). C1 showed the greatest
    growth inhibition by forming 17.50-mm and 17.85-mm inhibition zones against E. coli and S. aureus, respectively. The
    16s rDNA sequencing and phylogenetic analysis were performed to further identify the twelve isolates. The twelve isolates
    were found to be Lactobacillus (L.), particularly L. casei and L. paracasei. However, the bacteria isolated from drink B
    were incompatible to the labelled ones. In conclusion, probiotic drinks are possible to contain different bacterial counts
    and probiotic strains from the labelled ones. These differences might affect health benefi ts rendered by probiotic strains
    to consumers.
    Matched MeSH terms: DNA, Ribosomal
  20. Loong SK, Teoh BT, Johari J, Khor CS, Abd-Jamil J, Nor'e SS, et al.
    Case Rep Infect Dis, 2017;2017:2578082.
    PMID: 28331641 DOI: 10.1155/2017/2578082
    Bacillus anthracis is a bacterial pathogen of major concern. The spores of this bacteria can survive harsh environmental conditions for extended periods and are well recognized as a potential bioterror weapon with significant implications. Accurate and timely identification of this Bacillus species in the diagnostic laboratory is essential for disease and public health management. Biosafety Level 3 measures and ciprofloxacin treatment were instituted when B. anthracis was suspected from a patient with gangrenous foot. 16S rDNA sequencing was performed to accurately identify the suspected bacterium, due to the superiority of this method to accurately identify clinically isolated bacteria. B. megaterium was identified as the causative agent and the organism was subsequently treated as a Biosafety Level 2 pathogen.
    Matched MeSH terms: DNA, Ribosomal
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links