Displaying publications 141 - 160 of 205 in total

Abstract:
Sort:
  1. Fadel A, Plunkett A, Ashworth J, Mahmoud AM, Ranneh Y, El Mohtadi M, et al.
    J Food Sci Technol, 2018 Mar;55(3):1201-1206.
    PMID: 29487463 DOI: 10.1007/s13197-017-3010-0
    Arabinoxylans (AXs) are major dietary fibre in cereals. Recently, AXs have attracted a great deal of attention because of their biological activities. These activities have been suggested to be related to the content of low molecular weight (Mw) AXs, in particular those with Mw below 32 kDa. Rice bran is a rich source of AXs. However, water extraction of AXs is difficult and often gives low yield. Extrusion processing has been used to increase the solubility of cereal dietary fibre. The aim of this research was to study the effect of extrusion screw-speeds (80 and 160) rpm on the extraction yield and Mw of water extractable AXs from rice bran. It was found that the extraction of AXs increased significantly with an increase in screw speed and was accompanied by a significant decrease in the Mw of AXs from extruded rice bran. The percentage of very low molecular weight AXs (0.79-1.58 kDa) significantly increased with increasing screw speed.
    Matched MeSH terms: Biological Phenomena
  2. Simone E, Othman R, Vladisavljević GT, Nagy ZK
    Pharmaceutics, 2018 Jan 24;10(1).
    PMID: 29364167 DOI: 10.3390/pharmaceutics10010017
    In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80w/wacetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM); and particle vision and measurement (PVM) were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.
    Matched MeSH terms: Biological Phenomena
  3. Siew-Yi Lee, Siti Aqlima Ahmad, Siti Roslina Mustapha, Janna Ong-Abdullah
    MyJurnal
    Despite wide applications in industries, phenol pollution leads to many health effects, and one of the technologies used to clean up phenol pollution is phytoremediation. The aim of this research was to assess the remediation ability of Ipomoea aquatica Forssk., which is easy to handle and and has a fast growth rate. Plantlet was grown in water spiked with 0.05, 0.10, 0.20, 0.30 and 0.40 g/L phenol, followed by daily observation of the plantlets morphology and tracking of phenol concentration in the water and plantlet extracts via 4-aminoantipyrine (4-AAP) assay. Plantlet’s roots in 0.10 g/L phenol (57.42 ± 1.41 mm) were significantly longer (p < 0.05) than those of the control plantlets (43.57 ± 3.87 mm) in contrast to other phenol concentrations which had stunted roots growth. I. aquatica Forssk. was able to survive with 0.30 g/L phenol despite exhibiting yellowing of leaves and increased sensitivity to scarring on the stems. The plantlets were able to completely remove the phenol from the water spiked with phenol at 0.05 g/L after 12 days of growth. However, the highest average rate of phenol removal was 0.021 g/L/day from water spiked with 0.30 g/L phenol. Phenol analysis on the plantlets’ extracts revealed that I. aquatica Forssk. had degraded the absorbed phenol. This observation is of significant interest as it highlights the
    potential of I. aquatica Forssk. for use as a phytoremediator to clean up phenol contaminated water.
    Matched MeSH terms: Biological Phenomena
  4. Sidek MSM, Siregar JA, Ghani ARI, Idris Z
    Malays J Med Sci, 2018 Mar;25(2):95-104.
    PMID: 30918459 DOI: 10.21315/mjms2018.25.2.10
    Background: With teleneurosurgery, more patients with head injury are managed in the primary hospital under the care of general surgical unit. Growing concerns regarding the safety and outcome of these patients are valid and need to be addressed.

    Method: This study is to evaluate the outcome of patients with mild head injury which were managed in non-neurosurgical centres with the help of teleneurosurgery. The study recruits samples from five primary hospitals utilising teleneurosurgery for neurosurgical consultations in managing mild head injury cases in Johor state. Two main outcomes were noted; favourable and unfavourable, with a follow up review of the Glasgow Outcome Scale (GOS) at 3 and 6 months.

    Results: Total of 359 samples were recruited with a total of 11 (3.06%) patients have an unfavourable. no significant difference in GOS at 3 and 6 months for patient in the unfavourable group (P = 0.368).

    Conclusion: In this study we have found no significant factors affecting the outcome of mild head injury patients managed in non-neurosurgical centres in Johor state using the help of teleneurosurgery.

    Matched MeSH terms: Biological Phenomena
  5. Noor RA
    Malays J Med Sci, 2003 Jul;10(2):91-2.
    PMID: 23386804 MyJurnal
    Primary pterygium in children is uncommon but is associated with severe visual problems. Astigmatism is the main visual problem caused by pterygium. Significant amounts of astigmatism occur long before a pterygium encroaches the visual axis. Early surgical intervention is safe and effective. It is associated with significant visual improvement in outcome. This is a case report on seven-year-old Malay boy who presented with a growth over nasal aspect of the right eye of 1 year duration. His right eye visual acuity is affected up to 6/12. The dilemma pased to early surgical interview is the high rate of recurrancean the young age group. This problem is highlighted in this case report.
    Matched MeSH terms: Biological Phenomena
  6. Lim SYM, Alshagga M, Kong C, Alshawsh MA, Alshehade SA, Pan Y
    Arch Toxicol, 2022 12;96(12):3163-3174.
    PMID: 36175686 DOI: 10.1007/s00204-022-03382-3
    With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.
    Matched MeSH terms: Biological Phenomena*
  7. Ball HJ, Jusof FF, Bakmiwewa SM, Hunt NH, Yuasa HJ
    Front Immunol, 2014;5:485.
    PMID: 25346733 DOI: 10.3389/fimmu.2014.00485
    Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway (KP). The depletion of tryptophan and formation of KP metabolites modulates the activity of the mammalian immune, reproductive, and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties, and biological functions. This review analyzes the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.
    Matched MeSH terms: Biological Phenomena
  8. Hiroyuki T, Wichai S
    Zookeys, 2011.
    PMID: 21594085 DOI: 10.3897/zookeys.89.761
    Simulium (Nevermannia) maeaiensesp. n. is described on the basis of female, male, pupal and larval specimens collected from Chiang Mai Province, Thailand. This species is assigned to the feuerborni species-group of the subgenus Simulium (Nevermannia), and is distinctive among this species-group in having the female cibarium furnished with numerous dark minute conical processes on the lower part, the female genital fork with a strongly sclerotized horizontal bar on each arm, and six long pupal gill filaments arising nearly at the same level from the common basal stalk and lying in a horizontal plane. Identification keys to seven species of the feuerborni species-group reported from Thailand are provided for females, males, pupae and mature larvae.
    Matched MeSH terms: Biological Phenomena
  9. Yee W
    Bioresour Technol, 2015 Nov;196:1-8.
    PMID: 26210717 DOI: 10.1016/j.biortech.2015.07.033
    In order to assess the feasibility of various carbon sources and plant materials in increasing the growth rate and biomass productivity of Monoraphidium griffithii, ten carbon sources as well as six plant materials were tested in mixotrophic cultures with or without aeration. It was found that glucose, fructose, maltose, sodium acetate and mannitol were potential carbon sources for growth enhancement of M. griffithii. Supplementation of culture medium with these carbon sources resulted in approximately 1-4-fold increase in cell density compared to control in a small scale culture. In a larger scale mixotrophic culture with aeration, 0.05% mannitol and 0.1% fructose resulted in a decent 1-1.5-fold increase in final cell density, approximately 2-fold increase in growth rate and 0.5-1-fold increase in dry biomass weight. Findings from this study suggests that glucose, fructose, maltose and mannitol were potential organic carbon sources for mixotrophic culture of M. griffithii.
    Matched MeSH terms: Biological Phenomena
  10. Polter SJ, Caraballo AA, Lee YP, Eng WW, Gan HM, Wheatley MS, et al.
    Genome Announc, 2015;3(4).
    PMID: 26227604 DOI: 10.1128/genomeA.00847-15
    Here, we report the isolation, identification, whole-genome sequencing, and annotation of four Bacillus species from internal stem tissue of the insulin plant Costus igneus, grown in Puerto Rico. The plant is of medicinal importance, as extracts from its leaves have been shown to lower blood sugar levels of hyperglycemic rats.
    Matched MeSH terms: Biological Phenomena
  11. Atshan SS, Shamsudin MN, Sekawi Z, Thian Lung LT, Barantalab F, Liew YK, et al.
    Front Microbiol, 2015;6:524.
    PMID: 26089817 DOI: 10.3389/fmicb.2015.00524
    Staphylococcus aureus is well known for its biofilm formation with rapid emergence of new clones circulating worldwide. The main objectives of the study were (1) to identify possible differences in protein expression among various and closely related clonal types of S. aureus, (2) to establish the differences in protein expression in terms of size of protein spots and its intensities between bacteria which are grown statically (biofilm formation) with that of under aeration and agitation, and (3) to compare the differences in protein expression as a function of time (in hours). In this study, we selected six clinical isolates comprising two similar (MRSA-527 and MRSA-524) and four different (MRSA-139, MSSA-12E, MSSA-22d, and MSSA-10E) types identified by spa typing, MLST and SCCmec typing. We performed 2D gel migration comparison. Also, two MRSA isolates (527 and 139) were selected to determine quantitative changes in the level of extracellular proteins at different biofilm growth time points of 12, 24, and 48 h. The study was done using a strategy that combines 2-DGE and LC-MS/MS analysis for absolute quantification and identification of the extracellular proteins. The 2DGE revealed that the proteomic profiles for the isolates belonging to the similar spa, MLST, and SCCmec types were still quite different. Among the extracellular proteins secreted at different time points of biofilm formation, significant changes in protein expression were observed at 48 h incubation as compared to the exponential growth at 12 h incubation. The main conclusion of the work is that the authors do observe differences among isolates, and growth conditions do influence the protein content at different time points of biofilm formation.
    Matched MeSH terms: Biological Phenomena
  12. Abu Bakar MF, Kamerkar U, Abdul Rahman SN, Muhd Sakaff MKL, Othman AS
    Data Brief, 2020 Oct;32:106188.
    PMID: 32904357 DOI: 10.1016/j.dib.2020.106188
    Hevea brasiliensis is exploited for its latex production, and it is the only viable source of natural rubber worldwide. The demand for natural rubber remains high due its high-quality properties, which synthetic rubber cannot compete with. In this paper, we present transcriptomic data and analysis of three H. brasiliensis clones using tissue from latex and bark tissues collected from 10-year-old plant. The combined, assembled transcripts were mapped onto an H. brasiliensis draft genome. Gene ontology analysis showed that the most abundant transcripts related to molecular functions, followed by biological processes and cellular components. Simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) were also identified, and these can be useful for selection of parental and new clones in a breeding program. Data generated by RNA sequencing were deposited in the NCBI public repository under accession number PRJNA629890.
    Matched MeSH terms: Biological Phenomena
  13. Oslan SNH, Tan JS, Abbasiliasi S, Ziad Sulaiman A, Saad MZ, Halim M, et al.
    Microorganisms, 2020 Oct 24;8(11).
    PMID: 33114463 DOI: 10.3390/microorganisms8111654
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
    Matched MeSH terms: Biological Phenomena
  14. Syafaat MN, Muhammad T, Abol-Munafi AB, Ikhwanuddin M
    Data Brief, 2019 Oct;26:104438.
    PMID: 31528675 DOI: 10.1016/j.dib.2019.104438
    Population density, growth, survival, water quality and larval stage index of purple mud crab, Scylla tranquebarica at different feeding regimes and the data on ingestion rate of chosen microalgae, survival and larval development of blue swimming crab, Portunus pelagicus are presented. A twenty days of S. tranquebarica larval culture from zoeal 1 until megalopa stage under two different feeding regimes of A) Rotifer, Artemia nauplii and shrimp meat and B) Rotifer, Artemia nauplii and artificial feed is shared. A method on investigation of individual larvae of P. pelagicus capability to catch four different types of microalgae within 24 h is also shared. Direct eye observation, data collected through the larval rearing culture of S. tranquebarica and further statistical analysis were done daily until the crabs reached the megalopa stage. The result obtained from the optimum density of selected microalgae fed by individual larvae of P. pelagicus will be combined with the highest survival rate and larval stage index to develop feeding schedule for crab larvae P. pelagicus. This dataset has not previously been published and is of great potential for further comparison with other - and future investigation of various feeding regimes affected the crab culture. The collected information could be used as a standard feeding regime for nursery and hatchery seed production of others portunids crabs. The data described in this article are available as a supplementary file to this article.
    Matched MeSH terms: Biological Phenomena
  15. Zauki NAM, Satyanarayana B, Fairuz-Fozi N, Nelson BR, Martin MB, Akbar-John B, et al.
    Data Brief, 2019 Feb;22:458-463.
    PMID: 30619923 DOI: 10.1016/j.dib.2018.12.027
    The data available in this repository were gathered from Balok, the only most productive spawning site for horseshoe crabs Tachypleus gigas and Carcinoscorpius rotundicauda in East Coast of Peninsular Malaysia. The mangrove horseshoe crab, C. rotundicauda population and spawning data are available in the first table. The horseshoe crabs were retrieved from Balok River using 11.43 cm mesh size gill nets installed at the river mouth, the confluence and last meander. The arthropods were inspected for damage, abnormality and growth before their release into Balok River, particularly at the site of capture. Sediment samples were retrieved at their spawning grounds to ascertain sediment composition and size classifications which were also processed using Logarithmic Method of Moments. Water parameters like temperature, pH and salinity were also investigated during year 2016. All these information are compiled into the second table and arranged according to the period of data availability. The horseshoe crab catch data of years 2012, 2013, 2014, 2015 and 2016 were made available by artisanal fisher and compiled in the third and fourth table for inter-species comparison.
    Matched MeSH terms: Biological Phenomena
  16. Wan Nasri WN, Makpol S, Mazlan M, Tooyama I, Wan Ngah WZ, Damanhuri HA
    J Alzheimers Dis, 2019;70(s1):S239-S254.
    PMID: 30507571 DOI: 10.3233/JAD-180496
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive abilities. AD is associated with aggregation of amyloid-β (Aβ) deposited in the hippocampal brain region. Our previous work has shown that tocotrienol rich fraction (TRF) supplementation was able to attenuate the blood oxidative status, improve behavior, and reduce fibrillary-type Aβ deposition in the hippocampus of an AD mouse model. In the present study, we investigate the effect of 6 months of TRF supplementation on transcriptome profile in the hippocampus of APPswe/PS1dE9 double transgenic mice. TRF supplementation can alleviate AD conditions by modulating several important genes in AD. Moreover, TRF supplementation attenuated the affected biological process and pathways that were upregulated in the AD mouse model. Our findings indicate that TRF supplementation can modulate hippocampal gene expression as well as biological processes that can potentially delay the progression of AD.
    Matched MeSH terms: Biological Phenomena
  17. Jutarut Iewkittayakorn, Juntima Chungsiriporn, Prukraya Pongyeela
    Sains Malaysiana, 2017;46:1763-1769.
    Ammonium-enriched skim latex serum - used for absorption of contaminating ammonia gas - when composted with other rubber tree wastes, is promising as a good compost. The objective of this research was to utilize ammonium-enriched skim latex serum (S) as a raw composting ingredient after being combined with para sawdust (W1) and para rubber leaves (W2). Several ratios of S, W1 and W2 were experimented in a 15L composting vessel to determine the most effective compost. The best ratio was found to be 3:1:3 by weight at 12-day retention. The modified 30 L composting reactor employed with the derived optimum mixing conditions yielded N, P and K of 2.40, 1.51 and 14.84 %w/w. The growth of Brassica alboglabra after application of this compost combined with a chemical fertilizer generated the highest fresh weight (4.48 g/plant). Thus, compost from these wastes could be used as a fertilizer and logically should contribute to cost saving of waste disposal.
    Matched MeSH terms: Biological Phenomena
  18. Zentou H, Zainal Abidin Z, Yunus R, Awang Biak DR, Abdullah Issa M, Yahaya Pudza M
    ACS Omega, 2021 Feb 16;6(6):4137-4146.
    PMID: 33644536 DOI: 10.1021/acsomega.0c04025
    Despite the advantages of continuous fermentation whereby ethanol is selectively removed from the fermenting broth to reduce the end-product inhibition, this process can concentrate minor secondary products to the point where they become toxic to the yeast. This study aims to develop a new mathematical model do describe the inhibitory effect of byproducts on alcoholic fermentation including glycerol, lactic acid, acetic acid, and succinic acid, which were reported as major byproducts during batch alcoholic fermentation. The accumulation of these byproducts during the different stages of batch fermentation has been quantified. The yields of total byproducts, glycerol, acetic acid, and succinic acid per gram of glucose were 0.0442, 0.023, 0.0155, and 0.0054, respectively. It was found that the concentration of these byproducts linearly increases with the increase in glucose concentration in the range of 25-250 g/L. The results have also showed that byproduct concentration has a significant inhibitory effect on specific growth coefficient (μ) whereas no effect was observed on the half-velocity constant (Ks). A new mathematical model of alcoholic fermentation was developed considering the byproduct inhibitory effect, which showed a good performance and more accuracy compared to the classical Monod model.
    Matched MeSH terms: Biological Phenomena
  19. Hashim AN, Salleh MAAM, Sandu AV, Ramli MM, Yee KC, Mohd Mokhtar NZ, et al.
    Materials (Basel), 2021 Feb 05;14(4).
    PMID: 33562471 DOI: 10.3390/ma14040738
    The evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint.
    Matched MeSH terms: Biological Phenomena
  20. Taufiqurrahman I, Ahmad A, Mustapha M, Lenggo Ginta T, Ady Farizan Haryoko L, Ahmed Shozib I
    Materials (Basel), 2021 Feb 27;14(5).
    PMID: 33673716 DOI: 10.3390/ma14051129
    Welding parameters obviously determine the joint quality during the resistance spot welding process. This study aimed to investigate the effect of welding current and electrode force on the heat input and the physical and mechanical properties of a SS316L and Ti6Al4V joint with an aluminum interlayer. The weld current values used in this study were 11, 12, and 13 kA, while the electrode force values were 3, 4, and 5 kN. Welding time and holding time remained constant at 30 cycles. The study revealed that, as the welding current and electrode force increased, the generated heat input increased significantly. The highest tensile-shear load was recorded at 8.71 kN using 11 kA of weld current and 3 kN of electrode force. The physical properties examined the formation of a brittle fracture and several weld defects on the high current welded joint. The increase in weld current also increased the weld diameter. The microstructure analysis revealed no phase transformation on the SS316L interface; instead, the significant grain growth occurred. The phase transformation has occurred on the Ti6Al4V interface. The intermetallic compound layer was also investigated in detail using the EDX (Energy Dispersive X-Ray) and XRD (X-Ray Diffraction) analyses. It was also found that both stainless steel and titanium alloy have their own fusion zone, which is indicated by the highest microhardness value.
    Matched MeSH terms: Biological Phenomena
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links