Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains.
A total of 20 Vibrio cholerae isolates were recovered for investigation from a cholera outbreak in Kelantan, Malaysia, that occurred between November and December 2009. All isolates were biochemically characterized as V. cholerae serogroup O1 Ogawa of the El Tor biotype. They were found to be resistant to multiple antibiotics, including tetracycline, erythromycin, sulfamethoxazole-trimethoprim, streptomycin, penicillin G, and polymyxin B, with 35% of the isolates being resistant to ampicillin. All isolates were sensitive to ciprofloxacin, norfloxacin, chloramphenicol, gentamicin, and kanamycin. Multiplex PCR analysis confirmed the biochemical identification and revealed the presence of virulence genes, viz., ace, zot, and ctxA, in all of the isolates. Interestingly, the sequencing of the ctxB gene showed that the outbreak strain harbored the classical cholera toxin gene and therefore belongs to the newly assigned El Tor variant biotype. Clonal analysis by pulsed-field gel electrophoresis demonstrated that a single clone of a V. cholerae strain was responsible for this outbreak. Thus, we present the first molecular evidence that the toxigenic V. cholerae O1 El Tor variant has invaded Malaysia, highlighting the need for continuous monitoring to facilitate early interventions against any potential epidemic by this biotype.
A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures.