Displaying publications 1461 - 1480 of 4089 in total

Abstract:
Sort:
  1. Masir N, Jones M, Abdul-Rahman F, Florence CS, Mason DY
    Pathology, 2012 Apr;44(3):228-33.
    PMID: 22406486 DOI: 10.1097/PAT.0b013e3283513fb2
    The hallmark of follicular lymphoma is the t(14;18)(q32;q21) chromosomal translocations that lead to deregulation of BCL2 expression in tumour cells. However, not all cases of follicular lymphoma express BCL2, nor is the t(14;18) translocation always present. Follicular lymphomas lacking the BCL2 rearrangement are less well studied with regards to their immunohistochemical and molecular features. This study aims to investigate the BCL2 protein expression pattern in t(14;18) negative follicular lymphomas.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/genetics*; Proto-Oncogene Proteins c-bcl-2/metabolism
  2. Wong CM, Tam HK, Ng WM, Boo SY, González M
    Plasmid, 2013 Mar;69(2):186-93.
    PMID: 23266397 DOI: 10.1016/j.plasmid.2012.12.002
    A cryptic plasmid, pMWHK1 recovered from an Antarctic bacterium Pedobacter cryoconitis BG5 was sequenced and characterised. The plasmid is a circular 6206bp molecule with eight putative open reading frames designated as orf1, orf2, orf3, orf4, orf5, orf6, orf7 and orf8. All the putative open reading frames of pMWHK1 are found to be actively transcribed. Proteins encoded by orf2 and orf4 are predicted to be responsible for the mobilization and replication of the plasmid respectively. orf4 shares 55% and 61% identities with the theta-type Rep proteins from two strains of Riemerella anatipestifer. This suggests that pMWHK1 could be a member of the theta-type replicating plasmid. The origin of replication is located within the AT-rich region upstream of orf4. orf5 and orf6 encode bacterial toxin-antitoxin proteins predicted to maintain plasmid stability. orf3 encodes an entry exclusion protein that is hypothetically involved in reducing the frequency of DNA transfer through conjugation. orf1, orf7 and orf8 encode proteins with unknown functions. Plasmid, pMWHK1 is stably maintained in P. cryoconitis BG5 at 20°C.
    Matched MeSH terms: Bacterial Proteins/metabolism; Bacterial Proteins/chemistry
  3. Halim AA, Feroz SR, Tayyab S
    Biosci Biotechnol Biochem, 2013;77(1):87-96.
    PMID: 23291750
    Treatment of Bacillus licheniformis α-amylase (BLA) with guanidine hydrochloride (GdnHCl) produced both denatured and aggregated forms of the enzyme as studied by circular dichroism, fluorescence, UV difference spectroscopy, size exclusion chromatography (SEC), and enzymatic activity. The presence of CaCl(2) in the incubation mixture produced significant recovery in spectral signals, being complete in presence of 10 mM CaCl(2), as well as in enzymatic activity, which is indicative of protein stabilization. However, the SEC results obtained with GdnHCl-denatured BLA both in the absence and the presence of 10 mM CaCl(2) suggested significant aggregation of the protein in the absence of CaCl(2) and disaggregation in its presence. Although partial structural stabilization with significant retention of enzymatic activity was observed in the presence of calcium, it was far from the native state, as reflected by spectral probes. Hence, spectral results as to BLA stabilization should be treated with caution in the presence of aggregation.
    Matched MeSH terms: Bacterial Proteins/metabolism; Bacterial Proteins/chemistry*
  4. Low SY, Tan BS, Choo HL, Tiong KH, Khoo AS, Leong CO
    Cancer Lett, 2012 Jan 28;314(2):166-75.
    PMID: 22033244 DOI: 10.1016/j.canlet.2011.09.025
    The efficacy of cisplatin for treating nasopharyngeal carcinoma (NPC) is limited by the dose-related toxicities and the development of resistance to cisplatin. Recent studies have shown that B cell lymphoma-2 (BCL-2) is overexpressed and confers chemoresistance in NPC. Thus, targeted therapy against BCL-2 may enhance the antitumour effects of chemotherapy by sensitizing the tumor cells to undergo apoptosis. This study evaluated the combined effects of BCL-2 inhibition and cisplatin in NPC cells. Our results demonstrate that inhibition of BCL-2 by small-hairpin RNA (shRNA) or the BCL-2 inhibitor YC137, synergizes cisplatin sensitivity in NPC cells that overexpress BCL-2. We also show that YC137 enhance cisplatin-induced apoptosis in HK1 and CNE1 cells through suppression of BCL-2 protein expression, induction of mitochondrial depolarization and activation of caspase 9 and caspase 3/7. These findings suggest that the combination of BCL-2 inhibition and cisplatin represents a promising strategy for treating NPC.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/analysis; Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors*
  5. Hossan MS, Chan ZY, Collins HM, Shipton FN, Butler MS, Rahmatullah M, et al.
    Cancer Lett, 2019 07 01;453:57-73.
    PMID: 30930233 DOI: 10.1016/j.canlet.2019.03.034
    Natural products possess a significant role in anticancer therapy and many currently-used anticancer drugs are of natural origin. Cerberin (CR), a cardenolide isolated from the fruit kernel of Cerbera odollam, was found to potently inhibit cancer cell growth (GI50 values 60% bioavailability and rapid absorption; doses of 1-10 mg/kg CR were predicted to maintain efficacious unbound plasma concentrations (>GI50 value). CR's potent and selective anti-tumour activity, and its targeting of key signalling mechanisms pertinent to tumourigenesis support further preclinical evaluation of this cardiac glycoside.
    Matched MeSH terms: Proto-Oncogene Proteins; Cell Cycle Proteins; Proto-Oncogene Proteins c-akt
  6. Shintani M, Minaguchi K, Suzuki K, Lim KA
    Biochem Genet, 1990 Apr;28(3-4):173-84.
    PMID: 2383244
    Three new variants of acidic proline-rich proteins (At, Au, Aw) were found in human parotid saliva by isoelectric focusing and basic gel electrophoresis. Electrophoretic comparison of the purified proteins and their tryptic peptides suggested minor charge and size differences from other acidic PRPs. Genetic and biochemical studies indicate that the At and Aw proteins are allelic products of the PRH1 locus. Gene frequencies of the At productive allele (PRH1(6)) in Japanese, Chinese, and Malays were 0.008, 0.012, and 0.004, respectively. The Au protein was also found in Japanese (2 in 746 samples), Chinese (1 in 215 samples), and Malays (1 in 220 samples), however, the Aw protein was found only in one Japanese (n = 746). These three proteins were not found in 106 Indian subjects.
    Matched MeSH terms: Salivary Proteins and Peptides/genetics*; Salivary Proline-Rich Proteins
  7. Othman N, Nagoor NH
    Int J Oncol, 2017 Dec;51(6):1757-1764.
    PMID: 29075783 DOI: 10.3892/ijo.2017.4174
    Lung cancer remains a major health problem with a low 5-year survival rate of patients. Recent studies have shown that dysregulation of microRNAs (miRNAs) are prevalent in lung cancer and these aberrations play a significant role in the progression of tumour progression. In the present study, bioinformatics analyses was employed to predict potential miR-608 targets, which are associated with signaling pathways involved in cancer. Luciferase reporter assay identified AKT2 as a novel target of miR-608, and suppression of its protein levels was validated through western blot analysis. Zebrafish embryos were microinjected with cells transfected with miR-608 to elucidate the role of miR-608 in vivo, and immunostained with antibodies to detect activated caspase-3. We present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2, suggesting that selective targeting of AKT2 via miR-608 may be developed as a potential therapeutic strategy for miRNA-based non-small cell lung cancer (NSCLC) therapy.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/genetics*; Proto-Oncogene Proteins c-akt/metabolism
  8. Rosmilah M, Shahnaz M, Meinir J, Masita A, Noormalin A, Jamaluddin M
    Int Arch Allergy Immunol, 2013;162(4):299-309.
    PMID: 24193115 DOI: 10.1159/000354544
    The longtail tuna (Thunnus tonggol) is widely consumed in Asia. Parvalbumin, the main major allergen of fish, has been well identified in multiple fish species, yet little is known about the allergenic proteins in T. tonggol. Thus, the aim of this study was to characterize the major allergens of T. tonggol using a proteomics approach.
    Matched MeSH terms: Fish Proteins/immunology; Fish Proteins/chemistry*
  9. Zhao W, Dao C, Karim M, Gomez-Chiarri M, Rowley D, Nelson DR
    BMC Microbiol, 2016 Jan 05;16:1.
    PMID: 26728027 DOI: 10.1186/s12866-015-0617-z
    The probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens. In this study, we investigated the specific roles of TDA secretion and biofilm formation in the probiotic activity of S4Sm.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  10. Tan JS, Abbasiliasi S, Kadkhodaei S, Tam YJ, Tang TK, Lee YY, et al.
    BMC Microbiol, 2018 01 04;18(1):3.
    PMID: 29439680 DOI: 10.1186/s12866-017-1145-9
    BACKGROUND: Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared.

    RESULTS: The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation.

    CONCLUSION: Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.

    Matched MeSH terms: Recombinant Proteins/biosynthesis; Recombinant Proteins/genetics
  11. Quintero-Yanes A, Lee CM, Monson R, Salmond G
    Environ Microbiol, 2020 07;22(7):2921-2938.
    PMID: 32352190 DOI: 10.1111/1462-2920.15048
    Serratia sp. ATCC 39006 produces intracellular gas vesicles to enable upward flotation in water columns. It also uses flagellar rotation to swim through liquid and swarm across semi-solid surfaces. Flotation and motility can be co-regulated with production of a β-lactam antibiotic (carbapenem carboxylate) and a linear tripyrrole red antibiotic, prodigiosin. Production of gas vesicles, carbapenem and prodigiosin antibiotics, and motility are controlled by master transcriptional and post-transcriptional regulators, including the SmaI/SmaR-based quorum sensing system and the mRNA binding protein, RsmA. Recently, the ribose operon repressor, RbsR, was also defined as a pleiotropic regulator of flotation and virulence factor elaboration in this strain. Here, we report the discovery of a new global regulator (FloR; a DeoR family transcription factor) that modulates flotation through control of gas vesicle morphogenesis. The floR mutation is highly pleiotropic, down-regulating production of gas vesicles, carbapenem and prodigiosin antibiotics, and infection in Caenorhabditis elegans, but up-regulating flagellar motility. Detailed proteomic analysis using TMT peptide labelling and LC-MS/MS revealed that FloR is a physiological master regulator that operates through subordinate pleiotropic regulators including Rap, RpoS, RsmA, PigU, PstS and PigT.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism*
  12. Shamsuddin SH, Jayne DG, Tomlinson DC, McPherson MJ, Millner PA
    Sci Rep, 2021 01 12;11(1):744.
    PMID: 33436840 DOI: 10.1038/s41598-020-80354-6
    Carcinoembryonic antigen (CEA) is the only blood based protein biomarker at present, used for preoperative screening of advanced colorectal cancer (CRC) patients to determine the appropriate curative treatments and post-surveillance screening for tumour recurrence. Current diagnostics for CRC detection have several limitations and development of a highly sensitive, specific and rapid diagnostic device is required. The majority of such devices developed to date are antibody-based and suffer from shortcomings including multimeric binding, cost and difficulties in mass production. To circumvent antibody-derived limitations, the present study focused on the development of Affimer proteins as a novel alternative binding reagent for CEA detection. Here, we describe the selection, from a phage display library, of Affimers specific to CEA protein. Characterization of three anti-CEA Affimers reveal that these bind specifically and selectively to protein epitopes of CEA from cell culture lysate and on fixed cells. Kinetic binding analysis by SPR show that the Affimers bind to CEA with high affinity and within the nM range. Therefore, they have substantial potential for used as novel affinity reagents in diagnostic imaging, targeted CRC therapy, affinity purification and biosensor applications.
    Matched MeSH terms: GPI-Linked Proteins/metabolism; GPI-Linked Proteins/chemistry
  13. Pang SL, Matta SA, Sio YY, Ng YT, Say YH, Ng CL, et al.
    Sci Rep, 2021 01 13;11(1):921.
    PMID: 33441720 DOI: 10.1038/s41598-020-79820-y
    House dust mites (HDMs) are one of the major causes of allergies in the world. The group 23 allergen, Der p 23, from Dermatophagoides pteronyssinus, is a major allergen amongst HDM-sensitized individuals. This study aims to determine the specific immunoglobulin E (sIgE) binding frequency and IgE-binding residues of recombinant Der p 23 (rDer p 23) allergen amongst a cohort of consecutive atopic individuals in a tropical region. We performed site-directed mutagenesis and carried out immuno-dot blot assays using 65 atopic sera. The immuno-dot blot assays results indicated that the two residues K44 and E46 which are located at the N-terminal region are the major IgE-binding residues. The rDerp-23 sIgE titers are strongly correlated to the number of IgE-binding residues for rDer p 23 (P 
    Matched MeSH terms: Arthropod Proteins/immunology; Arthropod Proteins/metabolism
  14. Craig MI, Rimondi A, Delamer M, Sansalone P, König G, Vagnozzi A, et al.
    Avian Dis, 2009 Sep;53(3):331-5.
    PMID: 19848068
    Chicken infectious anemia virus (CAV) is a worldwide-distributed infectious agent that affects commercial poultry. Although this agent was first detected in Argentina in 1994, no further studies on CAV in this country were reported after that. The recent increased occurrence of clinical cases of immunosuppression that could be caused by CAV has prompted this study. Our results confirmed that CAV is still circulating in commercial flocks in Argentina. Phylogenetic analysis focusing on the VP1 nucleotide sequence showed that all Argentinean isolates grouped together in a cluster, sharing a high similarity (> 97%) with genotype B reference strains. However, Argentinean isolates were distantly related to other strains commonly used for vaccination in this country, such as Del-Ros and Cux-1. Sequence analysis of predicted VP1 peptides showed that most of the Argentinean isolates have a glutamine residue at positions 139 and 144, suggesting that these isolates might have a reduced spread in cell culture compared with Cux-1. In addition, a particular amino acid substitution at position 290 is present in all studied Argentinean isolates, as well as in several VP1 sequences from Malaysia, Australia, and Japan isolates. Our results indicate that it is possible to typify CAV strains by comparison of VPI nucleotide sequences alone because the same tree topology was obtained when using the whole genome sequence. The molecular analysis of native strains sheds light into the epidemiology of CAV in Argentinean flocks. In addition, this analysis could be considered in future control strategies focused not only on breeders but on broilers and layer flocks.
    Matched MeSH terms: Capsid Proteins/genetics; Capsid Proteins/metabolism
  15. Yasmin AR, Omar AR, Farhanah MI, Hiscox AJ, Yeap SK
    Avian Dis, 2019 06 01;63(2):275-288.
    PMID: 31251527 DOI: 10.1637/11936-072418-Reg.1
    Chicken dendritic cells (DCs) have been demonstrated to be susceptible to infectious bursal disease virus (IBDV), a causative agent of acute and immunosuppressed disease in young chicks known as infectious bursal disease. Further functional characterization of IBDV-infected DCs of chickens is required to provide a better understanding on the influence of the virus on chicken bone marrow-derived dendritic cells (BM-DCs) following very virulent (vv) IBDV infection. Membrane proteins of BM-DCs were extracted and the proteins were further denatured and reduced before performing labeling with isobaric tags for relative and absolute quantitation. The differential expression protein profiles were identified and quantified using liquid chromatography coupled with tandem mass spectrometry, and later validated using flow cytometry and real-time reverse transcriptase PCR. The analysis has identified 134 differentially regulated proteins from a total of 283 proteins (cutoff values of ≤0.67, ≥1.5, and ProtScore >1.3 at 95% confidence interval), which produced high-yield membrane fractions. The entry of vvIBDV into the plasma membrane of BM-DCs was observed at 3 hr postinfection by the disruption of several important protein molecule functions, namely apoptosis, RNA/DNA/protein synthesis, and transport and cellular organization, without the activation of proteins associated with signaling. At the later stage of infection, vvIBDV induced expression of several proteins, namely CD200 receptor 1-A, integrin alpha-5, HSP-90, cathepsin, lysosomal-associated membrane protein, and Ras-related proteins, which play crucial roles in signaling, apoptosis, stress response, and antigen processing as well as in secretion of danger-associated proteins. These findings collectively indicated that the chicken DCs are expressing various receptors regarded as potential targets for pathogen interaction during viral infection. Therefore, fundamental study of the interaction of DCs and IBDV will provide valuable information in understanding the role of professional antigen-presenting cells in chickens and their molecular interactions during IBDV infection and vaccination.
    Matched MeSH terms: Avian Proteins/genetics*; Avian Proteins/metabolism
  16. Phong SF, Hair-Bejo M, Omar AR, Aini I
    Avian Dis, 2003 Jan-Mar;47(1):154-62.
    PMID: 12713171
    The VP2 hypervariable region of P97/302 local infectious bursal disease virus (IBDV) isolate was amplified by the reverse transcriptase (RT) nested polymerase chain reaction (PCR) and cloned. This region of P97/302 local isolate was sequenced and compared with eight other reported IBDV sequences. The result showed that P97/302 IBDV was most identical to the reported very virulent IBDV strains because it has amino acid substitutions at positions 222, 256, 294, and 299, which encode alanine, isoleucine, isoleucine, and serine, respectively. This region can be digested with restriction enzymes of Taq1, Sty1, Ssp1 but not with Sac1. The P97/302 isolate was then used for the optimization of RT nested PCR enzyme-linked immunosorbent assay (ELISA). The RT nested PCR ELISA was able to detect 10(-4) dilution of the infected bursa homogenates and was 10 times more sensitive when compared with the agarose gel detection method. The RT nested PCR ELISA can detect up to 0.48 ng of the PCR product. The specificity of this nested PCR ELISA was also high (100%).
    Matched MeSH terms: Viral Structural Proteins/genetics*; Viral Structural Proteins/chemistry
  17. Teow SY, Liew K, Che Mat MF, Marzuki M, Abdul Aziz N, Chu TL, et al.
    BMC Biotechnol, 2019 06 14;19(1):34.
    PMID: 31200673 DOI: 10.1186/s12896-019-0528-4
    BACKGROUND: In vitro modelling of cancer cells is becoming more complex due to prevailing evidence of intimate interactions between cancer cells and their surrounding stroma. A co-culture system which consists of more than one cell type is physiologically more relevant and thus, could serve as a useful model for various biological studies. An assay that specifically detects the phenotypic changes of cancer cells in a multi-cellular system is lacking for nasopharyngeal carcinoma (NPC).

    RESULTS: Here, we describe a luciferase/luciferin (XenoLuc) assay that could specifically measure changes in the proliferation of cancer cells in the co-culture system using two modified NPC patient-derived tumour xenograft (PDTXs) cells: Xeno284-gfp-luc2 and XenoB110-gfp-luc2. Through this assay, we are able to show that the growth of NPC xenograft cells in both two-dimensional (2D) and three-dimensional (3D) models was enhanced when co-cultured with normal human dermal fibroblasts (NHDFs). In addition, potential applications of this assay in in vitro drug or inhibitor screening experiments are also illustrated.

    CONCLUSIONS: XenoLuc assay is specific, sensitive, rapid and cost-effective for measuring the growth of luciferase-expressing cells in a co- or multiple-culture system. This assay may also be adapted for tumour microenvironment studies as well as drug screening experiments in more complex 3D co-culture systems.

    Matched MeSH terms: Green Fluorescent Proteins/genetics; Green Fluorescent Proteins/metabolism*
  18. Wong KY, Tan KY, Tan NH, Tan CH
    Toxins (Basel), 2021 01 14;13(1).
    PMID: 33466660 DOI: 10.3390/toxins13010060
    The Senegalese cobra, Naja senegalensis, is a non-spitting cobra species newly erected from the Naja haje complex. Naja senegalensis causes neurotoxic envenomation in Western Africa but its venom properties remain underexplored. Applying a protein decomplexation proteomic approach, this study unveiled the unique complexity of the venom composition. Three-finger toxins constituted the major component, accounting for 75.91% of total venom proteins. Of these, cardiotoxin/cytotoxin (~53%) and alpha-neurotoxins (~23%) predominated in the venom proteome. Phospholipase A2, however, was not present in the venom, suggesting a unique snake venom phenotype found in this species. The venom, despite the absence of PLA2, is highly lethal with an intravenous LD50 of 0.39 µg/g in mice, consistent with the high abundance of alpha-neurotoxins (predominating long neurotoxins) in the venom. The hetero-specific VINS African Polyvalent Antivenom (VAPAV) was immunoreactive to the venom, implying conserved protein antigenicity in the venoms of N. senegalensis and N. haje. Furthermore, VAPAV was able to cross-neutralize the lethal effect of N. senegalensis venom but the potency was limited (0.59 mg venom completely neutralized per mL antivenom, or ~82 LD50 per ml of antivenom). The efficacy of antivenom should be further improved to optimize the treatment of cobra bite envenomation in Africa.
    Matched MeSH terms: Cobra Neurotoxin Proteins/analysis; Cobra Neurotoxin Proteins/toxicity
  19. Oyong DA, Loughland JR, SheelaNair A, Andrew D, Rivera FDL, Piera KA, et al.
    Malar J, 2019 Sep 18;18(1):312.
    PMID: 31533836 DOI: 10.1186/s12936-019-2962-0
    BACKGROUND: Anaemia is a major consequence of malaria, caused by the removal of both infected and uninfected red blood cells (RBCs) from the circulation. Complement activation and reduced expression of complement regulatory proteins (CRPs) on RBCs are an important pathogenic mechanism in severe malarial anaemia in both Plasmodium falciparum and Plasmodium vivax infection. However, little is known about loss of CRPs on RBCs during mild malarial anaemia and in low-density infection.

    METHODS: The expression of CRP CR1, CD55, CD59, and the phagocytic regulator CD47, on uninfected normocytes and reticulocytes were assessed in individuals from two study populations: (1) P. falciparum and P. vivax-infected patients from a low transmission setting in Sabah, Malaysia; and, (2) malaria-naïve volunteers undergoing P. falciparum induced blood-stage malaria (IBSM). For clinical infections, individuals were categorized into anaemia severity categories based on haemoglobin levels. For IBSM, associations between CRPs and haemoglobin level were investigated.

    RESULTS: CRP expression on RBC was lower in Malaysian individuals with P. falciparum and P. vivax mild malarial anaemia compared to healthy controls. CRP expression was also reduced on RBCs from volunteers during IBSM. Reduction occurred on normocytes and reticulocytes. However, there was no significant association between reduced CRPs and haemoglobin during IBSM.

    CONCLUSIONS: Removal of CRPs occurs on both RBCs and reticulocytes during Plasmodium infection even in mild malarial anaemia and at low levels of parasitaemia.

    Matched MeSH terms: Complement System Proteins/genetics*; Complement System Proteins/metabolism
  20. Chai SJ, Ahmad Zabidi MM, Gan SP, Rajadurai P, Lim PVH, Ng CC, et al.
    Dis Markers, 2019;2019:3857853.
    PMID: 31236144 DOI: 10.1155/2019/3857853
    Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer prevalent in Southern China and Southeast Asia. The current knowledge on the molecular pathogenesis of NPC is still inadequate to improve disease management. Using gene expression microarrays, we have identified the four-jointed box 1 (FJX1) gene to be upregulated in primary NPC tissues relative to nonmalignant tissues. An orthologue of human FJX1, the four-jointed (fj) gene in Drosophila and Fjx1 in mouse, has reported to be associated with cancer progression pathways. However, the exact function of FJX1 in human is not well characterized. The overexpression of FJX1 mRNA was validated in primary NPC tissue samples, and the level of FJX1 protein was significantly higher in a subset of NPC tissues (42%) compared to the normal epithelium, where no expression of FJX1 was observed (p = 0.01). FJX1 is also found to be overexpressed in microarray datasets and TCGA datasets of other cancers including head and neck cancer, colorectal, and ovarian cancer. Both siRNA knockdown and overexpression experiments in NPC cell lines showed that FJX1 promotes cell proliferation, anchorage-dependent growth, and cellular invasion. Cyclin D1 and E1 mRNA levels were increased following FJX1 expression indicating that FJX1 enhances proliferation by regulating key proteins governing the cell cycle. Our data suggest that the overexpression of FJX1 contributes to a more aggressive phenotype of NPC cells and further investigations into FJX1 as a potential therapeutic target for NPC are warranted. The evaluation of FJX1 as an immunotherapy target for NPC and other cancers is currently ongoing.
    Matched MeSH terms: Membrane Proteins/genetics*; Membrane Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links