METHODS: C. elegans was aliquoted onto the center of assay plates and allowed to migrate towards sepsis (T) or control (C) urine samples spotted on the same plate. The number of worms found in either (T) or (C) was scored at 10-minute intervals over a 60-minute period.
RESULTS: The worms were able to identify the urine (<48 hours) of sepsis patients rapidly within 20 minutes (AUROC=0.67, p=0.012) and infection within 40 minutes (AUROC=0.80, p=0.016).
CONCLUSIONS: CESDA could be further explored for sepsis diagnosis.
METHODS: In total, 311 patients underwent erect whole spine anteroposterior, lateral and lower limb axis films. Radiographic measurements included Transilium Pelvic Height Difference (TPHD; mm), Hip Abduction-Adduction angle (H/Abd-Add; °), Lower limb Length Discrepancy (LLD; mm), and Pelvic Hypoplasia (PH angle; °). The incidence and severity of pelvic obliquity were stratified to Lenke curve subtypes in 311 patients. The causes of pelvic obliquity were analyzed in 57 patients with TPHD ≥10 mm.
RESULTS: The mean Cobb angle was 64.0 ± 17.2°. Sixty-nine patients had a TPHD of 0 mm (22.2%). The TPHD was <5 mm in 134 (43.0%) patients, 5-9 mm in 104 (33.4%) patients, 10-14 mm in 52 (16.7%) patients, 15-19 mm in 19 (6.1%) patients, and ≥20 mm in only 2 (0.6%) patients. There was a significant difference between the Lenke curve types in terms of TPHD (p = 0.002). L6 curve types had the highest TPHD of 9.0 ± 6.3 mm followed by L5 curves, which had a TPHD of 7.1 ± 4.8 mm. In all, 44.2% of L1 curves and 50.0% of L2 curves had positive TPHD compared to 66.7% of L5 curves and 74.1% of L6 curves which had negative TPHD. 33.3% and 24.6% of pelvic obliquity were attributed to PH and LLD, respectively, whereas 10.5% of cases were attributed to H/Abd-Add positioning.
CONCLUSIONS: 76.4% of AIS cases had pelvic obliquity <10 mm; 44.2% of L1 curves and 50.0% of L2 curves had a lower right hemipelvis compared to 66.7% of L5 curves and 74.1% of L6 curves, which had a higher right hemipelvis. Among patients with pelvic obliquity ≥10 mm, 33.3% were attributed to PH, whereas 24.6% were attributed to LLD.
METHODS: In this prospective study, thyroid nodules were characterized by using the four TI-RADS systems and US-guided FNAC was done for nodule with the highest ACR TI-RADS score. Correlation between TI-RADS and FNAC results were analyzed.
RESULTS: Out of 244 thyroid nodules, 100 nodules with either size <1 cm (43 nodules) non-diagnostic or inconclusive FNAC results (57 nodules) were excluded. Seven nodules (4.9%) were confirmed to be malignant on FNAC. K TI-RADS showed 100% sensitivity and NPV but the lowest specificity (40.2%). EU TI-RADS had the highest specificity (83.2%) but the lowest sensitivity (57.1%) and NPV (97.4%). ACR TI-RADS had an average sensitivity (85.7%) and NPV (98.6%). The specificity of ACR TI-RADS (51.1%) was lower than EU TI-RADS but higher than K TI-RADS. AI TI-RADS showed higher specificity (61.8% vs 51.1%, p