Displaying publications 1381 - 1400 of 2499 in total

Abstract:
Sort:
  1. Basar N, Oridupa OA, Ritchie KJ, Nahar L, Osman NM, Stafford A, et al.
    Phytother Res, 2015 Jun;29(6):944-8.
    PMID: 25779384 DOI: 10.1002/ptr.5329
    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
  2. Hassani A, Hussain SA, Abdullah N, Kamarudin S, Rosli R
    AAPS PharmSciTech, 2019 Jan 07;20(2):53.
    PMID: 30617521 DOI: 10.1208/s12249-018-1238-2
    Orotic acid (OA) nanoparticles were prepared using the freeze-drying method. The antihypertensive activity and antioxidant capacity of OA and orotic acid-loaded gum arabic nanoparticles (OAGANPs) were examined using the angiotensin-converting enzyme (ACE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and β-carotene assays, as well as the quantification of total phenolic content (TPC). The DPPH and NO scavenging activities of OAGANPs were significantly higher than those of the OA solution. The β-carotene bleaching assay of OAGANPs showed a dose-dependent trend, while 500 μg/ml was significantly more effective than the other concentrations, which exerted 63.4% of the antioxidant activity. The in vitro antihypertensive assay revealed that the OAGANPs exhibited the most potent ACE inhibition activity, when compared to the OA solution. Hence, results revealed the potential of preparing the OA as a nanoparticle formulation in enhancing the antioxidant and antihypertensive properties compared to the OA solution.
    Matched MeSH terms: Plant Extracts/administration & dosage; Plant Extracts/chemistry
  3. Ngaha Njila MI, Massoma Lembè D, Koloko BL, Yong Meng G, Ebrahimi M, Awad EA, et al.
    Andrologia, 2019 Oct;51(9):e13359.
    PMID: 31353623 DOI: 10.1111/and.13359
    The effect of the methanolic extract of Alchornea cordifolia leaves on the fertility of senescent male rats was assessed in this study. 40 rats received daily distilled water, testosterone, 200 and 400 mg/kg of extract of Alchornea cordifolia. The reproductive organs weight, the gonadotropins, testosterone and cholesterol level, the sperm parameters, histology of the testes and epididymis were assessed. The weight of testes and prostate (400 mg/kg) significantly increased (p 
    Matched MeSH terms: Plant Extracts/administration & dosage*; Plant Extracts/isolation & purification
  4. Alam J, Jantan I, Kumolosasi E, Nafiah MA, Mesaik MA
    Curr Pharm Biotechnol, 2018;19(14):1156-1169.
    PMID: 30539691 DOI: 10.2174/1389201020666181211124954
    BACKGROUND: Standardized extract of Phyllanthus amarus has been shown to possess inhibitory effects on cellular and humoral immune responses in Wistar-Kyoto rats and Balb/c mice.

    OBJECTIVE: In the present study, the standardized extract of P. amarus was investigated for its suppressive effects on type II collagen-induced rheumatoid arthritis (TCIA) in Sprague Dawley rats.

    METHOD: The major components of the extracts, lignans and phenolic compounds were analysed by using a validated reversed phase HPLC and LC-MS/MS. A rheumatoid arthritis rat model was induced by administering a bovine type II collagen emulsion subcutaneously at the base of tail, on day 0 and 7 of the experiment. Effects of the extract on severity assessment, changes in the hind paw volume, bone mineral density, body weight and body temperature were measured. Concentrations of cytokines (TNF-α, IL-1β, IL-1α, IL-6) released, matrix metalloproteinases (MMP-1, MMP-3 MMP-9) and their inhibitor (TIMP-1), haematological and biochemical changes were also measured. ELISA was used to measure the cytokines and proteinases in the rat serum and synovial fluid according to manufacturer's instructions.

    RESULTS: The extract dose-dependently modulated the progression in physical parameters (i.e. decrease in body weight, increase in body temperature, reduced hind paw volume, reduced the severity of arthritis), bone mineral density, haematological and biochemical perturbations, serum cytokines production and levels of matrix metalloproteinases and their inhibitor in the synovial fluid. Histopathological examination of the knee joint also revealed that the extract effectively reduced synovitis, pannus formation, bone resorption and cartilage destruction.

    CONCLUSION: The results suggest that the oral administration of a standardized extract of P. amarus was able to suppress the humoral and cellular immune responses to type II collagen, resulting in the reduction of the development of TCIA in the rats.

    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/therapeutic use*
  5. Tan CS, Loh YC, Ch'ng YS, Ng CH, Yeap ZQ, Ahmad M, et al.
    J Ethnopharmacol, 2019 Mar 25;232:135-144.
    PMID: 30543913 DOI: 10.1016/j.jep.2018.12.014
    ETHNOPHARMACOLOGICAL RELEVANCE: Citrus reticulatae Pericarpium (Chen pi) was widely used as an important ingredient in the prescription of TCM to treat phlegm fluid retention type hypertension. Since Chen pi is involved in treatment as antihypertensive TCM formula, we have reasonable expectation in believing that it might possess vasorelaxant activity.

    AIM OF THE STUDY: This study is designed to investigate the vasorelaxant effect of Chen pi and to study its pharmacology effects.

    MATERIALS AND METHODS: The vasorelaxant effect of water extract of Chen pi (CRW) were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. The fingerprint of Chen pi and the extracts were developed with quantification of hesperidin content by HPTLC.

    RESULTS: CRW exhibited the strongest vasorelaxant activity. CRW caused the relaxation of the phenylephrine pre-contracted aortic rings in the presence and absence of endothelium as well as in potassium chloride pre-contracted endothelium-intact aortic ring. The incubation of propranolol (β-adrenergic receptor blocker), atropine (muscarinic receptor blocker), Nω-nitro-L-arginine methyl ester (NO synthase inhibitor), ODQ (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV blocker), barium chloride (Kir blocker), and glibenclamide (KATP blocker) significantly reduced the vasorelaxant effects of CRW. CRW was also found to be active in reducing Ca2+ releases from the sarcoplasmic reticulum and suppressing the voltage-operated calcium channels.

    CONCLUSION: The vasorelaxant effect of CRW on rat aorta involves NO/sGC, calcium and potassium channels, muscarinic and β-adrenergic receptors.

    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
  6. Asif M, Yehya AHS, Dahham SS, Mohamed SK, Shafaei A, Ezzat MO, et al.
    Biomed Pharmacother, 2019 Jan;109:1620-1629.
    PMID: 30551416 DOI: 10.1016/j.biopha.2018.10.127
    Proven the great potential of essential oils as anticancer agents, the current study intended to explore molecular mechanisms responsible for in vitro and in vivo anti-colon cancer efficacy of essential oil containing oleo-gum resin extract (RH) of Mesua ferrea. MTT cell viability studies showed that RH had broad spectrum cytotoxic activities. However, it induced more profound growth inhibitory effects towards two human colon cancer cell lines i.e., HCT 116 and LIM1215 with an IC50 values of 17.38 ± 0.92 and 18.86 ± 0.80 μg/mL respectively. RH induced relatively less toxicity in normal human colon fibroblasts i.e., CCD-18co. Cell death studies conducted, revealed that RH induced characteristic morphological and biochemical changes in HCT 116. At protein level it down-regulated expression of multiple pro-survival proteins i.e., survivin, xIAP, HSP27, HSP60 and HSP70 and up-regulated expression of ROS, caspase-3/7 and TRAIL-R2 in HCT 116. Furthermore, significant reduction in invasion, migration and colony formation potential was observed in HCT 116 treated with RH. Chemical characterization by GC-MS and HPLC methods revealed isoledene and elemene as one the major compounds. RH showed potent antitumor activity in xenograft model. Overall, these findings suggest that RH holds a promise to be further studied for cheap anti-colon cancer naturaceutical development.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/therapeutic use*
  7. Wetchakul P, Goon JA, Adekoya AE, Olatunji OJ, Ruangchuay S, Jaisamut P, et al.
    BMC Complement Altern Med, 2019 Aug 13;19(1):209.
    PMID: 31409340 DOI: 10.1186/s12906-019-2626-1
    BACKGROUND: The imbalance between the generation of free radicals and natural cellular antioxidant defenses, known as oxidative stress, can cause oxidation of biomolecules and further contribute to aging-associated diseases. The purpose of this study was to evaluate the antioxidant capacities of Thai traditional tonifying preparation, Jatu-Phala-Tiga (JPT) and its herbal ingredients consisting of Phyllanthus emblica, Terminalia arjuna, Terminalia chebula, and Terminalia bellirica and further assess its effect on longevity.

    METHOD: Antioxidant activities of various extracts obtained from JPT and its herbal components were carried out using well-established methods including metal chelating, free radical scavenging, and ferric reducing antioxidant power assays. Qualitative analysis of the chemical composition from JPT water extract was done by high-performance liquid chromatography tandem with electrospray ionisation mass spectrometry. The effect of JPT water extract on the lifespan of Caenorhabditis elegans were additionally described.

    RESULTS: Among the extracts, JPT water extract exerted remarkable antioxidant activities as compared to the extracts from other solvents and individual constituting plant extract. JPT water extract was found to possess the highest metal chelating activity, with an IC50 value of 1.75 ± 0.05 mg/mL. Moreover, it exhibited remarkable scavenging activities towards DPPH, ABTS, and superoxide anion radicals, with IC50 values of 0.31 ± 0.02, 0.308 ± 0.004, and 0.055 ± 0.002 mg/mL, respectively. The ORAC and FRAP values of JPT water extract were 40.338 ± 2.273 μM of Trolox/μg of extract and 23.07 ± 1.84 mM FeSO4/mg sample, respectively. Several well-known antioxidant-related compounds including amaronols, quinic acid, gallic acid, fertaric acid, kurigalin, amlaic acid, isoterchebin, chebulagic acid, ginkgolide C, chebulinic acid, ellagic acid, and rutin were found in this extract. Treatment with JPT water extract at 1 and 5 mg/mL increased C. elegans lifespan under normal growth condition (7.26 ± 0.65 vs. 10.4 0± 0.75 (p 

    Matched MeSH terms: Plant Extracts/analysis; Plant Extracts/pharmacology*
  8. Furman BL, Candasamy M, Bhattamisra SK, Veettil SK
    J Ethnopharmacol, 2020 Jan 30;247:112264.
    PMID: 31600561 DOI: 10.1016/j.jep.2019.112264
    ETHNOPHARMACOLOGICAL RELEVANCE: The global problem of diabetes, together with the limited access of large numbers of patients to conventional antidiabetic medicines, continues to drive the search for new agents. Ancient Asian systems such as traditional Chinese medicine, Japanese Kampo medicine, and Indian Ayurvedic medicine, as well as African traditional medicine and many others have identified numerous plants reported anecdotally to treat diabetes; there are probably more than 800 such plants for which there is scientific evidence for their activity, mostly from studies using various models of diabetes in experimental animals.

    AIM OF THE REVIEW: Rather than a comprehensive coverage of the literature, this article aims to identify discrepancies between findings in animal and human studies, and to highlight some of the problems in developing plant extract-based medicines that lower blood glucose in patients with diabetes, as well as to suggest potential ways forward.

    METHODS: In addition to searching the 2018 PubMed literature using the terms 'extract AND blood glucose, a search of the whole literature was conducted using the terms 'plant extracts' AND 'blood glucose' AND 'diabetes' AND 'double blind' with 'clinical trials' as a filter. A third search using PubMed and Medline was undertaken for systematic reviews and meta-analyses investigating the effects of plant extracts on blood glucose/glycosylated haemoglobin in patients with relevant metabolic pathologies.

    FINDINGS: Despite numerous animal studies demonstrating the effects of plant extracts on blood glucose, few randomised, double-blind, placebo-controlled trials have been conducted to confirm efficacy in treating humans with diabetes; there have been only a small number of systematic reviews with meta-analyses of clinical studies. Qualitative and quantitative discrepancies between animal and human clinical studies in some cases were marked; the factors contributing to this included variations in the products among different studies, the doses used, differences between animal models and the human disease, and the impact of concomitant therapy in patients, as well as differences in the duration of treatment, and the fact that treatment in animals may begin before or very soon after the induction of diabetes.

    CONCLUSION: The potential afforded by natural products has not yet been realised in the context of treating diabetes mellitus. A systematic, coordinated, international effort is required to achieve the goal of providing anti-diabetic treatments derived from medicinal plants.

    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/therapeutic use
  9. Wong PL, Fauzi NA, Mohamed Yunus SN, Abdul Hamid NA, Abd Ghafar SZ, Azizan A, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640504 DOI: 10.3390/molecules25133067
    Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 μg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 μg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.
    Matched MeSH terms: Plant Extracts/analysis; Plant Extracts/chemistry*
  10. Anuar NS, Zahari SS, Taib IA, Rahman MT
    Food Chem Toxicol, 2008 Jul;46(7):2384-9.
    PMID: 18468758 DOI: 10.1016/j.fct.2008.03.025
    The traditional use of papaya to treat many diseases, especially skin conditions and its prohibition for consumption during pregnancy has prompted us to determine whether papaya extracts both from green and ripe fruits improve wound healing and also produce foetal toxicity. Aqueous extracts of green papaya epicarp (GPE) and ripe papaya epicarp (RPE) were applied on induced wounds on mice. GPE treatment induced complete healing in shorter periods (13 days) than that required while using RPE (17 days), sterile water (18 days) and Solcoseryl ointment (21 days). Extracts were administered orally (1 mg/g body weight/day) to pregnant mice from day 10 and onwards after conception. 3 (n=7) mice and 1 (n=6) mice given RPE and misoprostol, an abortive drug, respectively experienced embryonic resorption while this effect was observed in none of the mice given GPE (n=5) and water (n=5). The average body weight of live pups delivered by mice given GPE (1.12+/-0.04 g) was significantly lower than those delivered by mice given water (1.38+/-0.02 g). In SDS-PAGE, proteins were distributed in three bands (Mr range approximately 8-29 kDa). Band intensity at Mr approximately 28-29 kDa was higher in GPE than in RPE. In contrast, band intensity at low Mr (approximately 8 kDa) was found to be higher in RPE than in GPE. Notably, the band corresponding to Mr approximately 23-25 kDa was absent in RPE. These differences in composition may have contributed to the different wound healing and abortive effects of green and ripe papaya.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/toxicity*
  11. Mani V, Ramasamy K, Ahmad A, Parle M, Shah SA, Majeed AB
    Food Chem Toxicol, 2012 Mar;50(3-4):1036-44.
    PMID: 22142688 DOI: 10.1016/j.fct.2011.11.037
    Dementia is a syndrome of gradual onset and continuous decline of higher cognitive functioning. It is a common disorder in older persons and has become more prevalent today. The fresh leaves of Murraya koenigii are often added to various dishes in Asian countries due to the delicious taste and flavor that they impart. These leaves have also been proven to have health benefits. In the present study, the effect of total alkaloidal extract from M. koenigii leaves (MKA) on cognitive functions and brain cholinesterase activity in mice were determined. In vitro β-secretase 1 (BACE1) inhibitory activity was also evaluated. The total alkaloidal extract was administered orally in three doses (10, 20 and 30 mg/kg) for 15 days to different groups of young and aged mice. Elevated plus maze and passive avoidance apparatus served as the exteroceptive behavioral models for testing memory. Diazepam-, scopolamine-, and ageing-induced amnesia served as the interoceptive behavioral models. MKA (20 and 30 mg/kg, p.o.) showed significant improvement in memory scores of young and aged mice. Furthermore, the same doses of MKA reversed the amnesia induced by scopolamine (0.4 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.). Interestingly, the brain cholinesterase activity was also reduced significantly by total alkaloidal extract of M. koenigii leaves. The IC50 value of MKA against BACE1 was 1.7 μg/mL. In conclusion, this study indicates MKA to be a useful remedy in the management of Alzheimer's disease and dementia.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use*
  12. Lim YC, Budin SB, Othman F, Latip J, Zainalabidin S
    Cardiovasc Toxicol, 2017 Jul;17(3):251-259.
    PMID: 27402292 DOI: 10.1007/s12012-016-9379-6
    Roselle (Hibiscus sabdariffa Linn.) calyces have demonstrated propitious cardioprotective effects in animal and clinical studies; however, little is known about its action on cardiac mechanical function. This study was undertaken to investigate direct action of roselle polyphenols (RP) on cardiac function in Langendorff-perfused rat hearts. We utilized RP extract which consists of 12 flavonoids and seven phenolic acids (as shown by HPLC profiling) and has a safe concentration range between 125 and 500 μg/ml in this study. Direct perfusion of RP in concentration-dependent manner lowered systolic function of the heart as shown by lowered LVDP and dP/dtmax, suggesting a negative inotropic effect. RP also reduced heart rate (negative chronotropic action) while simultaneously increasing maximal velocity of relaxation (positive lusitropic action). Conversely, RP perfusion increased coronary pressure, an indicator for improvement in coronary blood flow. Inotropic responses elicited by pharmacological agonists for L-type Ca2+channel [(±)-Bay K 8644], ryanodine receptor (4-chloro-m-cresol), β-adrenergic receptor (isoproterenol) and SERCA blocker (thapsigargin) were all abolished by RP. In conclusion, RP elicits negative inotropic, negative chronotropic and positive lusitropic responses by possibly modulating calcium entry, release and reuptake in the heart. Our findings have shown the potential use of RP as a therapeutic agent to treat conditions like arrhythmia.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology
  13. Nokhala A, Siddiqui MJ, Ahmed QU, Ahamad Bustamam MS, Zakaria AZA
    Biomolecules, 2020 02 12;10(2).
    PMID: 32059529 DOI: 10.3390/biom10020287
    Stone leaf (Tetracera scandens) is a Southeast Asian medicinal plant that has been traditionally used for the management of diabetes mellitus. The underlying mechanisms of the antidiabetic activity have not been fully explored yet. Hence, this study aimed to evaluate the α-glucosidase inhibitory potential of the hydromethanolic extracts of T. scandens leaves and to characterize the metabolites responsible for such activity through gas chromatography-mass spectrometry (GC-MS) metabolomics. Crude hydromethanolic extracts of different strengths were prepared and in vitro assayed for α-glucosidase inhibition. GC-MS analysis was further carried out and the mass spectral data were correlated to the corresponding α-glucosidase inhibitory IC50 values via an orthogonal partial least squares (OPLS) model. The 100%, 80%, 60% and 40% methanol extracts displayed potent α-glucosidase inhibitory potentials. Moreover, the established model identified 16 metabolites to be responsible for the α-glucosidase inhibitory activity of T. scandens. The putative α-glucosidase inhibitory metabolites showed moderate to high affinities (binding energies of -5.9 to -9.8 kcal/mol) upon docking into the active site of Saccharomyces cerevisiae isomaltase. To sum up, an OPLS model was developed as a rapid method to characterize the α-glucosidase inhibitory metabolites existing in the hydromethanolic extracts of T. scandens leaves based on GC-MS metabolite profiling.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  14. Rahim NFC, Hussin Y, Aziz MNM, Mohamad NE, Yeap SK, Masarudin MJ, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652694 DOI: 10.3390/molecules26051261
    Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  15. Shah MD, Venmathi Maran BA, Haron FK, Ransangan J, Ching FF, Shaleh SRM, et al.
    Sci Rep, 2020 12 16;10(1):22091.
    PMID: 33328532 DOI: 10.1038/s41598-020-79094-4
    Marine leech Zeylanicobdella arugamensis (Piscicolidae), an economically important parasite is infesting predominantly cultured groupers, hybrid groupers and other fish in Southeast Asian countries. In this study, we tested the anti-parasitic potential of a medicinal plant Nephrolepis biserrata found in Sabah, East Malaysia against Z. arugamensis. Various concentrations of methanol extracts of the plant were tested experimentally against Z. arugamensis and disinfestation of the leech from its primary host hybrid groupers. The composition of methanol extract of N. biserrata was determined through LC-QTOF analysis. The significant anti-parasitic activity of 100% mortality of leeches was observed with the exposure of N. biserrata extracts. The average time to kill the leeches at concentrations of 25, 50 and 100 mg/ml was 25.11 ± 3.26, 11.91 ± 0.99, and 4.88 ± 0.50 min., respectively. Further, at various low concentrations of N. biserrata 2.5, 5 and 10 mg/ml, hybrid groupers were disinfested in an average time of 108.33 ± 12.65, 65.83 ± 9.70 and 29.16 ± 5.85 min., respectively. The tandem mass spectrometry data from LC-QTOF indicated some hits on useful bioactive compounds such as terpenoids (ivalin, isovelleral, brassinolide, and eschscholtzxanthin), flavonoids (alnustin, kaempferol 7,4'-dimethyl ether, and pachypodol), phenolics (piscidic acid, chlorogenic acid, and ankorine), and aromatic (3-hydroxycoumarin). Thus N. biserrata can act as a potential biocontrol agent.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
  16. Ling SK, Tanaka T, Kouno I
    Biol Pharm Bull, 2003 Mar;26(3):352-6.
    PMID: 12612446
    Enzyme inhibitory activities of 14 iridoids previously obtained from two Malaysian medicinal plants, Saprosma scortechinii and Rothmannia macrophylla, were evaluated in vitro using soybean lipoxygenase and bovine testis hyaluronidase. Most of the iridoids, including asperulosidic acid, paederosidic acid, and an epimeric mixture of gardenogenins A and B, did not show any effect on the enzyme activities, except for the bis-iridoids, which inhibited the lipoxygenase activity with their IC(50) values of approximately 1.3 times that of a known inhibitor, fisetin. Structural modification of asperulosidic acid and paederosidic acid through enzymatic hydrolysis by beta-glucosidase resulted in their inhibition towards the enzyme activities, and these activities were enhanced by the presence of some amino acids (lysine, leucine or glutamic acid) or ammonium acetate. Mixtures of gardenogenins A and B; isomers of non-glucosidic iridoids, incubated with amino acid or ammonium acetate did not show any inhibitory effect on the enzyme activities during the 6 h incubation period, except for lysine where spontaneous reaction between the iridoids and amino acid resulted in the inhibition of lipoxygenase activity. The results from these biomimetic reactions suggested that the iridoid aglycons and the intermediates formed by these reactive species could inhibit the enzyme activities, and thus substantiate previous reports that the formation of iridoidal aglycons is a prerequisite for the iridoid glycosides to demonstrate some of the biological activities. In addition, the results also indicated that it is worthwhile to further explore these intermediates as potential anti-inflammatory agents.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  17. Nusaibah SA, Siti Nor Akmar A, Idris AS, Sariah M, Mohamad Pauzi Z
    Plant Physiol Biochem, 2016 Dec;109:156-165.
    PMID: 27694009 DOI: 10.1016/j.plaphy.2016.09.014
    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring.
    Matched MeSH terms: Plant Extracts/analysis; Plant Extracts/metabolism
  18. Noor H, Hammonds P, Sutton R, Ashcroft SJ
    Diabetologia, 1989 Jun;32(6):354-9.
    PMID: 2668082
    In Malaysia, Tinospora crispa extract is taken orally by Type 2 (non-insulin-dependent) diabetic patients to treat hyperglycaemia. We have evaluated the claimed hypoglycaemic property by adding aqueous extract to the drinking water of normal and alloxan-diabetic rats. After one week, fasting blood glucose levels were significantly (p less than 0.01) lower and serum insulin levels were significantly (p less than 0.01) higher in treated diabetic animals (10.4 +/- 1.0 mmol/l and 12.8 +/- 1.1 muU/ml respectively) compared to untreated diabetic controls (17.4 +/- 1.7 mmol/l and 8.0 +/- 0.7 muU/ml respectively). The insulinotropic action of T. crispa was further investigated in vitro using isolated human or rat islets of Langerhans and HIT-T15 cells. In static incubations with rat islets and HIT-T15 B cells, the extract induced a dosage dependent stimulation and potentiation of basal and glucose-stimulated insulin secretion respectively. This insulinotropic effect was also evident in perifused human and rat islets and HIT-T5 B-cells. The observations that (i) in all three models insulin secretory rates rapidly returned to basal levels on removal of the extract and (ii) in rat islets, a second challenge with T. crispa induced an additional, stimulated response, are all consistent with physiological release of insulin by B cells. Moreover, the rate of HIT-T15 glucose utilisation was not affected by incubation with T. crispa, suggesting that the cells were viable throughout. These are the first studies to provide biochemical evidence which substantiates the traditional claims for an oral hypoglycaemic effect of Tinospora crispa, and which also show that the hypoglycaemic effect is associated with increased insulin secretion.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/therapeutic use
  19. Ooi DJ, Chan KW, Sarega N, Alitheen NB, Ithnin H, Ismail M
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322226 DOI: 10.3390/molecules21060682
    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.
    Matched MeSH terms: Plant Extracts/administration & dosage; Plant Extracts/chemistry*
  20. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    Chem Biol Interact, 2011 Mar 15;190(1):1-8.
    PMID: 21276781 DOI: 10.1016/j.cbi.2011.01.022
    Orthosiphon stamineus (OS) has been traditionally used to treat diabetes, kidney and urinary disorders, high blood pressure and bone or muscular pain. To assess the possibility of drug-herb interaction via interference of metabolism, effects of four OS extracts of different polarity and three active constituents (sinensetin, eupatorin and rosmarinic acid) on major human cDNA-expressed cytochrome P450 (CYP) enzymes were investigated. Three substrate-probe based high-performance liquid chromatography (HPLC) assays were established to serve as activity markers for CYP2C9, CYP2D6 and CYP3A4. Our results indicate that OS extracts and constituents exhibited differential modulatory effects on different CYPs. While none of the OS components showed significant inhibition on CYP2C9, eupatorin strongly and uncompetitively inhibited CYP2D6 activity with a K(i) value of 10.2μM. CYP3A4 appeared to be the most susceptible enzyme to OS inhibitory effects. It was moderately inhibited by OS dichloromethane and petroleum ether extract with mixed-type and noncompetitive inhibitions (K(i)=93.7 and 44.9μg/mL), respectively. Correlation study indicated that the inhibition was accounted for by the presence of eupatorin in the extracts. When IC(50) values of these extracts were expressed in volume per dose unit to reflect inhibitory effect at recommended human doses from commercially available products, moderate inhibition was also observed. In addition, CYP3A4 was strongly and noncompetitively inhibited by eupatorin alone, with a K(i) value of 9.3μM. These findings suggest that co-administration of OS products, especially those with high eupatorin content, with conventional drugs may have the potential to cause drug-herb interactions involving inhibition of major CYP enzymes.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links