Displaying publications 121 - 140 of 223 in total

Abstract:
Sort:
  1. Haragannavar VC, Tegginamani AS, Raju S, Kudva S, Peter CD, Shruthi DK
    Indian J Pathol Microbiol, 2019 2 2;62(1):3-6.
    PMID: 30706851 DOI: 10.4103/IJPM.IJPM_403_18
    Background: FHIT (Fragile histidine triad) a member of tumor suppressor family, has been extensively studied in many solid tumors including head and neck squamous cell carcinoma. Among all head and neck cyst and tumors odontogenic lesions account approximately 3%-9%. The molecular pathogenesis of these lesions is less explored. Defects in cell cycle regulators and tumor suppressor genes could result in the development of odontogenic cyst and tumors. Hence, we aimed to determine the significant role of a tumor suppressor gene FHIT in most commonly occurring odontogenic lesions mainly ameloblastoma, odontogenic keratocyst and dentigerous cyst.

    Subjects and Methods: Immunohistochemical analysis of FHIT was done in ameloblastoma, odontogenic keratocyst, dentigerous cyst and dental follicle. Interpretation of the stained slides were done using standard scoring criteria by two pathologist. The results were subjected for statistical analysis.

    Results: Expression of FHIT varied among the groups, with highest negative expression in ameloblastoma 44.4% followed by odontogenic keratocyst 14% and 100%positive expression was seen in dentigerous cyst. The expression levels between the groups were statistically insignificant.

    Conclusion: The varied expression or negative expression of FHIT could be considered as an indicator for aggressive behavior and transformation of preneoplastic/cystic epithelium.

    Matched MeSH terms: Acid Anhydride Hydrolases/genetics*
  2. Zainal Abidin MH, Abd Halim KB, Huyop F, Tengku Abdul Hamid TH, Abdul Wahab R, Abdul Hamid AA
    J Mol Graph Model, 2019 07;90:219-225.
    PMID: 31103914 DOI: 10.1016/j.jmgm.2019.05.003
    Dehalogenase E (DehE) is a non-stereospecific enzyme produced by the soil bacterium, Rhizobium sp. RC1. Till now, the catalytic mechanism of DehE remains unclear although several literature concerning its structure and function are available. Since DehE is non-stereospecific, the enzyme was hypothesized to follow a 'direct attack mechanism' for the catalytic breakdown of a haloacid. For a molecular insight, the DehE modelled structure was docked in silico with the substrate 2-chloropropionic acid (2CP) in the active site. The ideal position of DehE residues that allowed a direct attack mechanism was then assessed via molecular dynamics (MD) simulation. It was revealed that the essential catalytic water was hydrogen bonded to the 'water-bearer', Asn114, at a relatively constant distance of ∼2.0 Å after 50 ns. The same water molecule was also closely sited to the catalytic Asp189 at an average distance of ∼2.0 Å, signifying the imperative role of the latter to initiate proton abstraction for water activation. This reaction was crucial to promote a direct attack on the α-carbon of 2CP to eject the halide ion. The water molecule was oriented favourably towards the α-carbon of 2CP at an angle of ∼75°, mirrored by the formation of stable enzyme-substrate orientations throughout the simulation. The data therefore substantiated that the degradation of a haloacid by DehE followed a 'direct attack mechanism'. Hence, this study offers valuable information into future advancements in the engineering of haloacid dehalogenases with improved activity and selectivity, as well as functionality in solvents other than water.
    Matched MeSH terms: Hydrolases/metabolism*
  3. Ahmad MN, Liew SL, Yarmo MA, Said M
    Biosci Biotechnol Biochem, 2012;76(8):1438-44.
    PMID: 22878182
    Protease is one of the most important industrial enzymes with a multitude of applications in both food and non-food sectors. Although most commercial proteases are microbial proteases, the potential of non-conventional protease sources, especially plants, should not be overlooked. In this study, horse mango (Mangifera foetida Lour) fruit, known to produce latex with a blistering effect upon contact with human skin, was chosen as a source of protease, and the effect of the extraction process on its protease activity evaluated. The crude enzyme was extracted from the kernels and extraction was optimized by a response surface methodology (RSM) using a central composite rotatable design (CCRD). The variables studied were pH (x(1)), CaCl(2) (x(2)), Triton X-100 (x(3)), and 1,4-dithryeitol (x(4)). The results obtained indicate that the quadratic model is significant for all the variables tested. Based on the RSM model generated, optimal extraction conditions were obtained at pH 6.0, 8.16 mM CaCl(2), 5.0% Triton X-100, and 10.0 mM DTT, and the estimated response was 95.5% (w/w). Verification test results showed that the difference between the calculated and the experimental protease activity value was only 2%. Based on the t-value, the effects of the variables arranged in ascending order of strength were CaCl(2) < pH < DTT < Triton X-100.
    Matched MeSH terms: Peptide Hydrolases/isolation & purification*
  4. Zulkapli MM, Ab Ghani NS, Ting TY, Aizat WM, Goh HH
    Front Plant Sci, 2020;11:625507.
    PMID: 33552113 DOI: 10.3389/fpls.2020.625507
    Nepenthes is a genus comprising carnivorous tropical pitcher plants that have evolved trapping organs at the tip of their leaves for nutrient acquisition from insect trapping. Recent studies have applied proteomics approaches to identify proteins in the pitcher fluids for better understanding the carnivory mechanism, but protein identification is hindered by limited species-specific transcriptomes for Nepenthes. In this study, the proteomics informed by transcriptomics (PIT) approach was utilized to identify and compare proteins in the pitcher fluids of Nepenthes ampullaria, Nepenthes rafflesiana, and their hybrid Nepenthes × hookeriana through PacBio isoform sequencing (Iso-Seq) and liquid chromatography-mass spectrometry (LC-MS) proteomic profiling. We generated full-length transcriptomes from all three species of 80,791 consensus isoforms with an average length of 1,692 bp as a reference for protein identification. The comparative analysis found that transcripts and proteins identified in the hybrid N. × hookeriana were more resembling N. rafflesiana, both of which are insectivorous compared with omnivorous N. ampullaria that can derive nutrients from leaf litters. Previously reported hydrolytic proteins were detected, including proteases, glucanases, chitinases, phosphatases, nucleases, peroxidases, lipid transfer protein, thaumatin-like protein, pathogenesis-related protein, and disease resistance proteins. Many new proteins with diverse predicted functions were also identified, such as amylase, invertase, catalase, kinases, ligases, synthases, esterases, transferases, transporters, and transcription factors. Despite the discovery of a few unique enzymes in N. ampullaria, we found no strong evidence of adaptive evolution to produce endogenous enzymes for the breakdown of leaf litter. A more complete picture of digestive fluid protein composition in this study provides important insights on the molecular physiology of pitchers and carnivory mechanism of Nepenthes species with distinct dietary habits.
    Matched MeSH terms: Peptide Hydrolases; Phosphoric Monoester Hydrolases
  5. Ahmad MN, Shuhaimen MS, Normaya E, Omar MN, Iqbal A, Ku Bulat KH
    J Texture Stud, 2020 10;51(5):810-829.
    PMID: 32401337 DOI: 10.1111/jtxs.12529
    Meat tenderness is one of the most important organoleptic properties in determining consumer acceptance in meat product marketability. Therefore, an effective meat tenderization method is sought after by exploring plant-derived proteolytic enzymes as meat tenderizer. In this study, a novel protease from Cashew was identified as a new alternative halal meat tenderizer. The extraction of cashew protease was optimized using response surface methodology (R2 = 0.9803) by varying pH, CaCl2 concentration, mixing time, and mass. pH 6.34, 7.92 mM CaCl2 concentration, 5.51 min mixing time, and 19.24 g sample mass were the optimal extraction conditions. There was no significant difference (n = 3; p 
    Matched MeSH terms: Peptide Hydrolases/analysis*
  6. Adamu A, Shamsir MS, Wahab RA, Parvizpour S, Huyop F
    J Biomol Struct Dyn, 2017 Nov;35(15):3285-3296.
    PMID: 27800712 DOI: 10.1080/07391102.2016.1254115
    Dehalogenases are of high interest due to their potential applications in bioremediation and in synthesis of various industrial products. DehL is an L-2-haloacid dehalogenase (EC 3.8.1.2) that catalyses the cleavage of halide ion from L-2-halocarboxylic acid to produce D-2-hydroxycarboxylic acid. Although DehL utilises the same substrates as the other L-2-haloacid dehalogenases, its deduced amino acid sequence is substantially different (<25%) from those of the rest L-2-haloacid dehalogenases. To date, the 3D structure of DehL is not available. This limits the detailed understanding of the enzyme's reaction mechanism. The present work predicted the first homology-based model of DehL and defined its active site. The monomeric unit of the DehL constitutes α/β structure that is organised into two distinct structural domains: main and subdomains. Despite the sequence disparity between the DehL and other L-2-haloacid dehalogenases, its structural model share similar fold as the experimentally solved L-DEX and DehlB structures. The findings of the present work will play a crucial role in elucidating the molecular details of the DehL functional mechanism.
    Matched MeSH terms: Hydrolases/chemistry*
  7. Nawawi NN, Hashim Z, Manas NHA, Azelee NIW, Illias RM
    Int J Biol Macromol, 2020 Apr 01;148:1222-1231.
    PMID: 31759025 DOI: 10.1016/j.ijbiomac.2019.10.101
    Enzymatic synthesis of maltooligosaccharides is hampered due to lack of stability of soluble enzyme. This limitation can be tackled by cross linked enzyme aggregates (CLEAs) immobilization approach. However, substrate diffusion is a major bottleneck in cross linking technology. Herein, CLEAs of maltogenic amylase from Bacillus lehensis G1 (Mag1) was developed with addition of porous agent (Mag1-p-CLEAs). Comparison of thermal, pH and kinetic analysis with CLEAs without porous agent (Mag1-CLEAs) and free Mag1 was performed. Mag1-p-CLEAs with porous structure prepared at 0.8% (w/v) of citrus pectin (porous agent), 0.25% (w/v) of chitosan (cross linker) and cross linked for 1.5 h yielded 91.20% activity. 80% of activity is retained after 30 min of incubation at 40 °C and showed longer half-life than free Mag1 and Mag1-CLEAs. Mag1-p-CLEAs also showed pH stability at acidic and alkaline pH. The 1.68-fold increase in Vmax value in comparison to Mag1-CLEAs showed that the presence of pores of Mag1-p-CLEAs enhanced the beta-cyclodextrin accessibility. The increase in high catalytic efficiency (Kcat/Km) value, 1.90-fold and 1.05-fold showed that it also has better catalytic efficiency than free Mag1 and Mag1-CLEAs, respectively. Mag1-p-CLEAs not only improved substrate diffusibility of CLEAs, but also leads to higher thermal and pH stability of Mag1.
    Matched MeSH terms: Glycoside Hydrolases/chemistry*
  8. Chin VK, Basir R, Nordin SA, Abdullah M, Sekawi Z
    Int Microbiol, 2020 May;23(2):127-136.
    PMID: 30875033 DOI: 10.1007/s10123-019-00067-3
    Human leptospirosis is considered as one of the most widespread and potentially fatal zoonotic diseases that causes high mortality and morbidity in the endemic regions of tropical and subtropical countries. The infection can arise from direct or indirect exposure of human through contaminated environment that contains leptospires or animal reservoirs that carry leptospires. The clinical manifestations during human leptospirosis ranges from asymptomatic, mild infections to severe and life-threatening complications involving multi-organ failures with kidneys, lungs and liver severely affected. Despite much efforts have been put in to unravel the pathogenesis during human leptospirosis, it remains obscure to which extent the host factors or the pathogen itself contribute towards the pathogenesis. Host innate immunity, especially, polymorphonuclear neutrophils and complement system are involved in the first line of defense during human leptospirosis. However, pathogenic Leptospira has acquired diverse evasion strategies to evade from host immunity and establish infection in infected hosts. Hence, in this review, we focus on organs pathology during human leptospiral infection and host evasion strategies employed by Leptospira. A profound understanding on leptospiral immunity and how Leptospira subvert the immune system may provide new insights on the development of therapeutic regimens against this species in future.
    Matched MeSH terms: Peptide Hydrolases/metabolism
  9. Zarinah KH, Abdullah F, Tan SG
    Ann Hum Biol, 1984 11 1;11(6):533-6.
    PMID: 6084457
    Three genetic markers, red-cell UMPK, PGP and serum AMY2 were investigated in Malaysians of Malay, Chinese and Indian ancestries using starch-gel and agarose-gel electrophoresis. UMPK was found to be polymorphic in all three races. Variants were observed for PGP in Malays; in Indians it is a polymorphic marker whereas it is monomorphic in Chinese. AMY2 was polymorphic only in Indians. The UMPK1 frequencies in Malays, Chinese and Indians, respectively, are 0.851, 0.880 and 0.942. The PGP1 frequencies are 0.991, 1.000, 0.962, and the AMY1(2) frequencies are 1.000, 1.000 and 0.983.
    Matched MeSH terms: Phosphoric Monoester Hydrolases/genetics*
  10. Ong CB, Annuar MSM
    Prep Biochem Biotechnol, 2018 Feb 07;48(2):181-187.
    PMID: 29341838 DOI: 10.1080/10826068.2018.1425707
    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.
    Matched MeSH terms: Carboxylic Ester Hydrolases/chemistry*
  11. ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, et al.
    Bioengineered, 2022 Jun;13(6):14681-14718.
    PMID: 35946342 DOI: 10.1080/21655979.2022.2100863
    Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
    Matched MeSH terms: Peptide Hydrolases/metabolism
  12. Abdull Razis AF, Mohd Noor N, Konsue N
    Biomed Res Int, 2014;2014:391528.
    PMID: 24592387 DOI: 10.1155/2014/391528
    Phenethyl isothiocyanate (PEITC) is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin). The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT), N-acetyltransferase (NAT), glucuronosyl transferase (UDP), and epoxide hydrolase (EH) following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06 µmol/g (low dose, i.e., dietary intake), 0.6 µmol/g (medium dose), and 6.0 µmol/g (high dose), and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention.
    Matched MeSH terms: Epoxide Hydrolases/biosynthesis*
  13. Abdulshaheed AA, Hanafiah MM, Nawaz R, Muslim SN
    Microb Pathog, 2024 Feb;187:106534.
    PMID: 38184176 DOI: 10.1016/j.micpath.2024.106534
    One of the most prevalent infectious diseases and a key driver of antibiotic prescriptions in pediatrics is urinary tract infection (UTI). Due to the emergence of more resistant uropathogenic bacterial and fungal strains, current treatments are no longer effective, necessitating the urgent development of novel antibacterial and antifungal drugs. In this study, the antifungal, antibacterial, and anti-biofilm capabilities of compounds, such as tannase (TN) and gallic acid (GA), which were produced from a novel natural source, Acinetobacter baumannii (AB11) bacteria, were assessed for the inactivation of uropathogenic microorganisms (UMs). Ammonium sulphate precipitation, ion exchange, high-performance liquid chromatography, and gel filtration were used to purify TN and GA that were isolated from A. baumannii. A 43.08 % pure TN with 1221.2 U/mg specific activity and 10.51 mg/mL GA was obtained. The antibacterial, antifungal and anti-biofilm activities of TN and GA were evaluated against UMs and compared to those of commercially available antibiotics including sulfamethoxazole (SXT), levofloxacin (LEV), ciprofloxacin (CIP), amikacin (Ak), and nitrofurantoin (F). The results showed that TN and GA were superior to commercial antibiotics in their ability to inactivate UMs and considerably reduced biofilms formation. Additionally, the GA emerges as the top substitute for currently available medications, demonstrating superior antibacterial and antibiofilm properties against all UMs evaluated in this study. The results of this investigation showed that A. baumannii-derived TN and GA could be utilized as an alternative medication to treat UTIs.
    Matched MeSH terms: Carboxylic Ester Hydrolases*
  14. Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW, et al.
    Sci Rep, 2016 05 31;6:27008.
    PMID: 27243961 DOI: 10.1038/srep27008
    Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
    Matched MeSH terms: Peptide Hydrolases/genetics*; Peptide Hydrolases/immunology
  15. Darah I, Sumathi G, Jain K, Lim SH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1682-90.
    PMID: 21947762 DOI: 10.1007/s12010-011-9387-8
    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
    Matched MeSH terms: Carboxylic Ester Hydrolases/genetics; Carboxylic Ester Hydrolases/metabolism*
  16. Vellasamy KM, Vasu C, Puthucheary SD, Vadivelu J
    Microb Pathog, 2009 Sep;47(3):111-7.
    PMID: 19524661 DOI: 10.1016/j.micpath.2009.06.003
    To evaluate the potential role of extracellular proteins in the pathogenicity and virulence of Burkholderia pseudomallei, the activities of several enzymes in the culture filtrates of nine clinical and six environmental isolates were investigated in vitro and in vivo in ICR strain of mice. The production of protease, phosphatase, phospholipase C, superoxide dismutase, catalase and peroxidase were detected in the culture filtrates of all the 15 isolates at different time points of growth 4-24h. Over time, activity of each enzyme at each time point varied. Profile of secretion was similar among the 15 isolates irrespective of source, that is clinical or environmental. Catalase, phosphatase and phospholipase C were found to be increased in 60-100% of the isolates post-passage in mice. In vivo inoculation studies in ICR mice demonstrated a wide difference in their ability to cause bacteraemia, splenic or external abscesses and mortality rate ranged from few days to several weeks.
    Matched MeSH terms: Phosphoric Monoester Hydrolases/genetics; Phosphoric Monoester Hydrolases/metabolism
  17. Chan SW, Ong GI, Nathan S
    J. Biochem. Mol. Biol., 2004 Sep 30;37(5):556-64.
    PMID: 15479619
    A recombinant Fab monoclonal antibody (Fab) C37, previously obtained by phage display and biopanning of a random antibody fragment library against Burkholderia pseudomallei protease, was expressed in different strains of Escherichia coli. E. coli strain HB2151 was deemed a more suitable host for Fab expression than other E. coli strains when grown in media supplemented with 0.2 % glycerol. The expressed Fab fragment was purified by affinity chromatography on a Protein G-Sepharose column, and the specificity of the recombinant Fab C37 towards B. pseudomallei protease was proven by Western blotting, enzyme-linked immunosorbent assay (ELISA) and by proteolytic activity neutralization. In addition, polyclonal antibodies against B. pseudomallei protease were produced in rabbits immunized with the protease. These were isolated from high titer serum by affinity chromatography on recombinant-Protein A-Sepharose. Purified polyclonal antibody specificity towards B. pseudomallei protease was proven by Western blotting and ELISA.
    Matched MeSH terms: Peptide Hydrolases/immunology*; Peptide Hydrolases/chemistry
  18. Aqeel Y, Siddiqui R, Farooq M, Khan NA
    Exp Parasitol, 2015 Oct;157:170-6.
    PMID: 26297676 DOI: 10.1016/j.exppara.2015.08.007
    Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba.
    Matched MeSH terms: Peptide Hydrolases/drug effects; Peptide Hydrolases/metabolism
  19. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Glycoside Hydrolases/genetics; Glycoside Hydrolases/metabolism*
  20. Hashmi S, Khan S, Shafiq Z, Taslimi P, Ishaq M, Sadeghian N, et al.
    Bioorg Chem, 2021 02;107:104554.
    PMID: 33383322 DOI: 10.1016/j.bioorg.2020.104554
    With the fading of 'one drug-one target' approach, Multi-Target-Directed Ligands (MTDL) has become a central idea in modern Medicinal Chemistry. The present study aimed to design, develop and characterize a novel series of 4-(Diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) and evaluates their biological activity against cholinesterase, carbonic anhydrases and α-glycosidase enzymes. The hCA I isoform was inhibited by these novel 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones (3a-p) in low nanomolar levels, the Ki of which differed between 407.73 ± 43.71 and 1104.11 ± 80.66 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 323.04 ± 56.88 to 991.62 ± 77.26 nM. Also, these novel 4-(diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) effectively inhibited AChE, with Ki values in the range of 121.74 ± 23.52 to 548.63 ± 73.74 nM. For BChE, Ki values were obtained with in the range of 132.85 ± 12.53 to 618.53 ± 74.23 nM. For α-glycosidase, the most effective Ki values of 3b, 3k, and 3g were with Ki values of 77.85 ± 10.64, 96.15 ± 9.64, and 124.95 ± 11.44 nM, respectively. We have identified inhibition mechanism of 3b, 3g, 3k, and 3n on α-glycosidase AChE, hCA I, hCA II, and BChE enzyme activities. Hydrazine-1-carbothioamide and hydroxybenzylidene moieties of compounds play an important role in the inhibition of AChE, hCA I, and hCA II enzymes. Hydroxybenzylidene moieties are critical for inhibition of both BChE and α-glycosidase enzymes. The findings of in vitro and in silico evaluations indicate 4-(diethylamino)-salicylaldehyde-based thiosemicarbazone scaffold to be a promising hit for drug development for multifactorial diseases like Alzheimer's disease.
    Matched MeSH terms: Glycoside Hydrolases/antagonists & inhibitors*; Glycoside Hydrolases/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links