Displaying publications 121 - 126 of 126 in total

Abstract:
Sort:
  1. Kanapathipillai R, McManus H, Kamarulzaman A, Lim PL, Templeton DJ, Law M, et al.
    PLoS One, 2014;9(2):e86122.
    PMID: 24516527 DOI: 10.1371/journal.pone.0086122
    INTRODUCTION: Magnitude and frequency of HIV viral load blips in resource-limited settings, has not previously been assessed. This study was undertaken in a cohort from a high income country (Australia) known as AHOD (Australian HIV Observational Database) and another cohort from a mixture of Asian countries of varying national income per capita, TAHOD (TREAT Asia HIV Observational Database).

    METHODS: Blips were defined as detectable VL (≥ 50 copies/mL) preceded and followed by undetectable VL (<50 copies/mL). Virological failure (VF) was defined as two consecutive VL ≥50 copies/ml. Cox proportional hazard models of time to first VF after entry, were developed.

    RESULTS: 5040 patients (AHOD n = 2597 and TAHOD n = 2521) were included; 910 (18%) of patients experienced blips. 744 (21%) and 166 (11%) of high- and middle/low-income participants, respectively, experienced blips ever. 711 (14%) experienced blips prior to virological failure. 559 (16%) and 152 (10%) of high- and middle/low-income participants, respectively, experienced blips prior to virological failure. VL testing occurred at a median frequency of 175 and 91 days in middle/low- and high-income sites, respectively. Longer time to VF occurred in middle/low income sites, compared with high-income sites (adjusted hazards ratio (AHR) 0.41; p<0.001), adjusted for year of first cART, Hepatitis C co-infection, cART regimen, and prior blips. Prior blips were not a significant predictor of VF in univariate analysis (AHR 0.97, p = 0.82). Differing magnitudes of blips were not significant in univariate analyses as predictors of virological failure (p = 0.360 for blip 50-≤1000, p = 0.309 for blip 50-≤400 and p = 0.300 for blip 50-≤200). 209 of 866 (24%) patients were switched to an alternate regimen in the setting of a blip.

    CONCLUSION: Despite a lower proportion of blips occurring in low/middle-income settings, no significant difference was found between settings. Nonetheless, a substantial number of participants were switched to alternative regimens in the setting of blips.

    Matched MeSH terms: Coinfection
  2. Lim SG, Aghemo A, Chen PJ, Dan YY, Gane E, Gani R, et al.
    Lancet Gastroenterol Hepatol, 2017 01;2(1):52-62.
    PMID: 28404015 DOI: 10.1016/S2468-1253(16)30080-2
    The Asia-Pacific region has disparate hepatitis C virus (HCV) epidemiology, with prevalence ranging from 0·1% to 4·7%, and a unique genotype distribution. Genotype 1b dominates in east Asia, whereas in south Asia and southeast Asia genotype 3 dominates, and in Indochina (Vietnam, Cambodia, and Laos), genotype 6 is most common. Often, availability of all-oral direct-acting antivirals (DAAs) is delayed because of differing regulatory requirements. Ideally, for genotype 1 infections, sofosbuvir plus ledipasvir, sofosbuvir plus daclatasvir, or ombitasvir, paritaprevir, and ritonavir plus dasabuvir are suitable. Asunaprevir plus daclatasvir is appropriate for compensated genotype 1b HCV if baseline NS5A mutations are absent. For genotype 3 infections, sofosbuvir plus daclatasvir for 24 weeks or sofosbuvir, daclatasvir, and ribavirin for 12 weeks are the optimal oral therapies, particularly for patients with cirrhosis and those who are treatment experienced, whereas sofosbuvir, pegylated interferon, and ribavirin for 12 weeks is an alternative regimen. For genotype 6, sofosbuvir plus pegylated interferon and ribavirin, sofosbuvir plus ledipasvir, or sofosbuvir plus ribavirin for 12 weeks are all suitable. Pegylated interferon plus ribavirin has been replaced by sofosbuvir plus pegylated interferon and ribavirin, and all-oral therapies where available, but cost and affordability remain a major issue because of the absence of universal health coverage. Few patients have been treated because of multiple barriers to accessing care. HCV in the Asia-Pacific region is challenging because of the disparate epidemiology, poor access to all-oral therapy because of availability, cost, or regulatory licensing. Until these problems are addressed, the burden of disease is likely to remain high.
    Matched MeSH terms: Coinfection
  3. Andrieux-Meyer I, Tan SS, Thanprasertsuk S, Salvadori N, Menétrey C, Simon F, et al.
    Lancet Gastroenterol Hepatol, 2021 Jun;6(6):448-458.
    PMID: 33865507 DOI: 10.1016/S2468-1253(21)00031-5
    BACKGROUND: In low-income and middle-income countries, affordable direct-acting antivirals are urgently needed to treat hepatitis C virus (HCV) infection. The combination of ravidasvir, a pangenotypic non-structural protein 5A (NS5A) inhibitor, and sofosbuvir has shown efficacy and safety in patients with chronic HCV genotype 4 infection. STORM-C-1 trial aimed to assess the efficacy and safety of ravidasvir plus sofosbuvir in a diverse population of adults chronically infected with HCV.

    METHODS: STORM-C-1 is a two-stage, open-label, phase 2/3 single-arm clinical trial in six public academic and non-academic centres in Malaysia and four public academic and non-academic centres in Thailand. Patients with HCV with compensated cirrhosis (Metavir F4 and Child-Turcotte-Pugh class A) or without cirrhosis (Metavir F0-3) aged 18-69 years were eligible to participate, regardless of HCV genotype, HIV infection status, previous interferon-based HCV treatment, or source of HCV infection. Once daily ravidasvir (200 mg) and sofosbuvir (400 mg) were prescribed for 12 weeks for patients without cirrhosis and for 24 weeks for those with cirrhosis. The primary endpoint was sustained virological response at 12 weeks after treatment (SVR12; defined as HCV RNA <12 IU/mL in Thailand and HCV RNA <15 IU/mL in Malaysia at 12 weeks after the end of treatment). This trial is registered with ClinicalTrials.gov, number NCT02961426, and the National Medical Research Register of Malaysia, NMRR-16-747-29183.

    FINDINGS: Between Sept 14, 2016, and June 5, 2017, 301 patients were enrolled in stage one of STORM-C-1. 98 (33%) patients had genotype 1a infection, 27 (9%) had genotype 1b infection, two (1%) had genotype 2 infection, 158 (52%) had genotype 3 infection, and 16 (5%) had genotype 6 infection. 81 (27%) patients had compensated cirrhosis, 90 (30%) had HIV co-infection, and 99 (33%) had received previous interferon-based treatment. The most common treatment-emergent adverse events were pyrexia (35 [12%]), cough (26 [9%]), upper respiratory tract infection (23 [8%]), and headache (20 [7%]). There were no deaths or treatment discontinuations due to serious adverse events related to study drugs. Of the 300 patients included in the full analysis set, 291 (97%; 95% CI 94-99) had SVR12. Of note, SVR12 was reported in 78 (96%) of 81 patients with cirrhosis and 153 (97%) of 158 patients with genotype 3 infection, including 51 (96%) of 53 patients with cirrhosis. There was no difference in SVR12 rates by HIV co-infection or previous interferon treatment.

    INTERPRETATION: In this first stage, ravidasvir plus sofosbuvir was effective and well tolerated in this diverse adult population of patients with chronic HCV infection. Ravidasvir plus sofosbuvir has the potential to provide an additional affordable, simple, and efficacious public health tool for large-scale implementation to eliminate HCV as a cause of morbidity and mortality.

    FUNDING: National Science and Technology Development Agency, Thailand; Department of Disease Control, Ministry of Public Health, Thailand; Ministry of Health, Malaysia; UK Aid; Médecins Sans Frontières (MSF); MSF Transformational Investment Capacity; FIND; Pharmaniaga; Starr International Foundation; Foundation for Art, Research, Partnership and Education; and the Swiss Agency for Development and Cooperation.

    Matched MeSH terms: Coinfection/epidemiology
  4. Kamarulzaman A, Altice FL
    Curr. Opin. Infect. Dis., 2015 Feb;28(1):10-6.
    PMID: 25490106 DOI: 10.1097/QCO.0000000000000125
    HIV management in people who use drugs (PWUD) is typically complex and challenging due to the presence of multiple medical and psychiatric comorbidities as well as social, physical, economic and legal factors that often disrupt the HIV continuum of care. In this review, we describe the individual, health systems and societal barriers to HIV treatment access and care retention for PWUD. In addition, the clinical management of HIV-infected PWUD is often complicated by the presence of multiple infectious and noninfectious comorbidities.
    Matched MeSH terms: Coinfection
  5. Lee SC, Ngui R, Tan TK, Muhammad Aidil R, Lim YA
    PLoS One, 2014;9(9):e107980.
    PMID: 25248116 DOI: 10.1371/journal.pone.0107980
    Soil-transmitted helminth (STH) infections have been documented among these minority groups since 1938. However the prevalence of STH is still high among these communities. Most studies tend to consider the Orang Asli (indigenous) as a homogenous group. In contrary, different subtribes have their own cultural practices. To understand this variation better, we studied the prevalence and associated factors of STH and other gut parasitic infections among two common subtribes (i.e. Temuan and Temiar). Results showed that the prevalence of the overall STH infections was higher in the Temuan subtribe (53.2% of 171) compared to the Temiar subtribe (52.7% of 98). Trichuris trichiura (46.2%) was the most prevalent parasite in the Temuan subtribe, followed by Ascaris spp. (25.7%) and hookworm (4.1%). In contrast, Ascaris spp. (39.8%) was more prevalent among the Temiar subtribe, preceded by T. trichiura (35.7%) and finally hookworm (8.3%). There were also co-infections of helminthiasis and intestinal protozoa among both Temuan and Temiar subtribes with rates being three times higher among the Temiar compared to Temuan. The most common co-infection was with Entamoeba histolytica/dispar/moshkovskii (n = 24; 24.5%, 16.0-33.0), followed by Giardia spp. (n = 3; 3.1%, -0.3-6.5). In Temuan, STH infection individuals were also infected with Entamoeba histolytica/dispar/moshkovskii (n = 11; 6.4%, 5.0-13.8), Cryptosporidium spp. (n = 3, 1.8%, -0.2-3.8) and Giardia spp. (n = 2, 1.2%, -0.4-2.8). In comparison, there was no Cryptosporidium spp. detected among the Temiar. However, it was interesting to note that there was an occurrence of co-infection of intestinal helminthiasis and sarcocystosis (intestinal) in a Temiar individual. The last report of sarcocystosis (muscular) among the Orang Asli was in 1978. The present study highlighted the importance of understanding the variation of infections amongst the different Orang Asli subtribes. It is vital to note these differences and use this knowledge to customise effective control measures for the various subtribes.
    Matched MeSH terms: Coinfection
  6. Ramesh Kumar MR, Arunagirinathan N, Srivani S, Dhanasezhian A, Vijaykanth N, Manikandan N, et al.
    Microb Drug Resist, 2017 Jul;23(5):602-608.
    PMID: 27854149 DOI: 10.1089/mdr.2016.0034
    The antibiotic, trimethoprim-sulfamethoxazole (TMP-SMX), is generally used for prophylaxis in HIV individuals to protect them from Pneumocystis jiroveci infection. Long-term use of TMP-SMX develops drug resistance among bacteria in HIV patients. The study was aimed to detect the TMP-SMX resistance genes among gram-negative bacteria from HIV patients. TMP-SMX-resistant isolates were detected by the Kirby-Bauer disc diffusion method. While TMP resistance genes such as dfrA1, dfrA5, dfrA7, and dfrA17 and SMX resistance genes such as sul1 and sul2 were detected by multiplex PCR, class 1 and class 2 integrons were detected by standard monoplex PCR. Of the 151 TMP-SMX-resistant bacterial isolates, 3 were positive for sul1 alone, 48 for sul2 alone, 11 for dfrA7 alone, 21 for sul1 and sul2, 1 for sul1 and dfrA7, 23 for sul2 and dfrA7, 2 for sul2 and dfrA5, 41 for sul1, sul2, and dfrA7, and 1 for sul2, dfrA5, and dfrA7. Of 60 TMP-SMX-resistant isolates positive for integrons, 44 had class 1 and 16 had class 2 integrons. It was found that the prevalence of sul genes (n = 202; p 
    Matched MeSH terms: Coinfection
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links