Displaying publications 121 - 140 of 269 in total

Abstract:
Sort:
  1. Gaur P, Kumar P, Sharma A, Lal SK
    Lett Appl Microbiol, 2020 Apr;70(4):252-258.
    PMID: 31990997 DOI: 10.1111/lam.13279
    Neuraminidase (NA) is an integral membrane protein of influenza A virus (IAV) and primarily aids in the release of progeny virions, following the intracellular viral replication cycle. In an attempt to discover new functions of NA, we conducted a classical yeast two-hybrid screen and found acute myeloid leukaemia marker 1 (AML1) as a novel interacting partner of IAV-NA. The interaction was further validated by co-immunoprecipitation in IAV-infected cells and in an in vitro coupled transcription/translation system. Interestingly, we found an increase in the expression of AML1 upon IAV infection in a dose-dependent manner. As expected, we also observed an increase in the IFN-β levels, the first line of defence against viral infections. Subsequently, when AML1 was downregulated using siRNA, the IFN-β levels were found to be remarkably reduced. Our study also shows that AML1 is induced upon IAV infection and results in the induction of IFN-β. Thus, AML1 is proposed to be an important player in IFN induction and has a role in an antiviral response against IAV infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Influenza epidemics and pandemics are constant threats to human health. Development of antiviral therapeutics has focused on important and major IAV proteins as targets. However, the rate at which this virus mutates makes the task challenging. Thus, next-generation approaches aim at host cellular proteins that aid the virus in its replication. This study reports a new host-virus interaction, of acute myeloid leukaemia marker 1 (AML1) with influenza A neuraminidase (IAV-NA). We have found that this interaction has a direct effect on the upregulation of host IFN-β response. Further studies may lead to a greater understanding of this new innate defence pathway in infected cells.
    Matched MeSH terms: Up-Regulation
  2. Bahari MNA, Sakeh NM, Abdullah SNA, Ramli RR, Kadkhodaei S
    BMC Plant Biol, 2018 Dec 29;18(1):377.
    PMID: 30594134 DOI: 10.1186/s12870-018-1594-9
    BACKGROUND: Basal stem rot (BSR) caused by hemibiotroph Ganoderma boninense is a devastating disease resulting in a major loss to the oil palm industry. Since there is no physical symptom in oil palm at the early stage of G. boninense infection, characterisation of molecular defense responses in oil palm during early interaction with the fungus is of the utmost importance. Oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense inoculums and root samples were obtained following a time-course of 0, 3, 7, and 11 days-post-inoculation (d.p.i) for RNA sequencing (RNA-seq) and identification of differentially expressed genes (DEGs).

    RESULTS: The host counter-attack was evidenced based on fungal hyphae and Ganoderma DNA observed at 3 d.p.i which became significantly reduced at 7 and 11 d.p.i. DEGs revealed upregulation of multifaceted defense related genes such as PR-protein (EgPR-1), protease inhibitor (EgBGIA), PRR protein (EgLYK3) chitinase (EgCht) and expansin (EgEXPB18) at 3 d.p.i and 7 d.p.i which dropped at 11 d.p.i. Later stage involved highly expressed transcription factors EgERF113 and EgMYC2 as potential regulators of necrotrophic defense at 11 d.p.i. The reactive oxygen species (ROS) elicitor: peroxidase (EgPER) and NADPH oxidase (EgRBOH) were upregulated and maintained throughout the treatment period. Growth and nutrient distribution were probably compromised through suppression of auxin signalling and iron uptake genes.

    CONCLUSIONS: Based on the analysis of oil palm gene expression, it was deduced that the biotrophic phase of Ganoderma had possibly occurred at the early phase (3 until 7 d.p.i) before being challenged by the fungus via switching its lifestyle into the necrotrophic phase at later stage (11 d.p.i) and finally succumbed the host. Together, the findings suggest the dynamic defense process in oil palm and potential candidates that can serve as phase-specific biomarkers at the early stages of oil palm-G. boninense interaction.

    Matched MeSH terms: Up-Regulation
  3. Azizi P, Rafii MY, Abdullah SN, Hanafi MM, Maziah M, Sahebi M, et al.
    Front Plant Sci, 2016;7:773.
    PMID: 27379107 DOI: 10.3389/fpls.2016.00773
    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48, and 72 h after inoculation in transgenic plants, while it was increased in the inoculated control plants. This study successfully clarified that over-expression of the Pikh gene in transgenic plants can improve their blast resistance against the M. oryzae pathotype P7.2.
    Matched MeSH terms: Up-Regulation
  4. Yang SK, Yusoff K, Ajat M, Yap WS, Lim SE, Lai KS
    J Pharm Anal, 2021 Apr;11(2):210-219.
    PMID: 34012697 DOI: 10.1016/j.jpha.2020.05.014
    Mining of plant-derived antimicrobials is the major focus at current to counter antibiotic resistance. This study was conducted to characterize the antimicrobial activity and mode of action of linalyl anthranilate (LNA) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). LNA alone exhibited bactericidal activity at 2.5% (V/V), and in combination with meropenem (MPM) at 1.25% (V/V). Comparative proteomic analysis showed a significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in LNA-treated KPC-KP cells. Up-regulation of oxidative stress regulator proteins and down-regulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that LNA increases both bacterial surface charge and membrane permeability. Ethidium bromide influx/efflux assay showed increased uptake of ethidium bromide in LNA-treated cells, inferring membrane damage. Furthermore, intracellular leakage of nucleic acid and proteins was detected upon LNA treatment. Scanning and transmission electron microscopies again revealed the breakage of bacterial membrane and loss of intracellular materials. LNA was found to induce oxidative stress by generating reactive oxygen species (ROS) that initiate lipid peroxidation and damage the bacterial membrane. In conclusion, LNA generates ROS, initiates lipid peroxidation, and damages the bacterial membrane, resulting in intracellular leakage and eventually killing the KPC-KP cells.
    Matched MeSH terms: Up-Regulation
  5. Chan HH, Leong YQ, Voon SM, Pan ML, Leong CO, Lim CL, et al.
    Rep Biochem Mol Biol, 2021 Jan;9(4):417-425.
    PMID: 33969135 DOI: 10.52547/rbmb.9.4.417
    Background: Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive dysfunction. Previous studies have suggested that amyloid plaques, mainly comprising of amyloid-beta peptides, play a pivotal role in AD pathophysiology. This study focuses on the evaluation of the effects of amyloid precursor protein (APP) overexpression on NF-κB, Rho-GTPase and Bcl-2 mediated pro-apoptotic pathways in neuronal cells.

    Methods: A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells.

    Results: In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKβ and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group.

    Conclusion: APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.

    Matched MeSH terms: Up-Regulation
  6. Ho CL, Teoh S, Teo SS, Rahim RA, Phang SM
    Mar Biotechnol (NY), 2009 Jul-Aug;11(4):513-9.
    PMID: 19043658 DOI: 10.1007/s10126-008-9166-x
    Light regulates photosynthesis, growth and reproduction, yield and properties of phycocolloids, and starch contents in seaweeds. Despite its importance as an environmental cue that regulates many developmental, physiological, and biochemical processes, the network of genes involved during light deprivation are obscure. In this study, we profiled the transcriptome of Gracilaria changii at two different irradiance levels using a cDNA microarray containing more than 3,000 cDNA probes. Microarray analysis revealed that 93 and 105 genes were up- and down-regulated more than 3-fold under light deprivation, respectively. However, only 50% of the transcripts have significant matches to the nonredundant peptide sequences in the database. The transcripts that accumulated under light deprivation include vanadium chloroperoxidase, thioredoxin, ferredoxin component, and reduced nicotinamide adenine dinucleotide dehydrogenase. Among the genes that were down-regulated under light deprivation were genes encoding light harvesting protein, light harvesting complex I, phycobilisome 7.8 kDa linker polypeptide, low molecular weight early light-inducible protein, and vanadium bromoperoxidase. Our findings also provided important clues to the functions of many unknown sequences that could not be annotated using sequence comparison.
    Matched MeSH terms: Up-Regulation
  7. Chan LC, Kalyanasundram J, Leong SW, Masarudin MJ, Veerakumarasivam A, Yusoff K, et al.
    BMC Cancer, 2021 May 27;21(1):625.
    PMID: 34044804 DOI: 10.1186/s12885-021-08345-y
    BACKGROUND: Newcastle disease virus (NDV) is an oncolytic virus with excellent selectivity against cancer cells, both in vitro and in vivo. Unfortunately, prolonged in vitro NDV infection results in the development of persistent infection in the cancer cells which are then able to resist NDV-mediated oncolysis. However, the mechanism of persistency of infection remains poorly understood.

    METHODS: In this study, we established persistently NDV-infected EJ28 bladder cancer cells, designated as EJ28P. Global transcriptomic analysis was subsequently carried out by microarray analysis. Differentially expressed genes (DEGs) between EJ28 and EJ28P cells identified by the edgeR program were further analysed by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analyses. In addition, the microarray data were validated by RT-qPCR.

    RESULTS: Persistently NDV-infected EJ28 bladder cancer cells were successfully established and confirmed by flow cytometry. Microarray analysis identified a total of 368 genes as differentially expressed in EJ28P cells when compared to the non-infected EJ28 cells. GSEA revealed that the Wnt/β-catenin and KRAS signalling pathways were upregulated while the TGF-β signalling pathway was downregulated. Findings from this study suggest that the upregulation of genes that are associated with cell growth, pro-survival, and anti-apoptosis may explain the survivability of EJ28P cells and the development of persistent infection of NDV.

    CONCLUSIONS: This study provides insights into the transcriptomic changes that occur and the specific signalling pathways that are potentially involved in the development and maintenance of NDV persistency of infection in bladder cancer cells. These findings warrant further investigation and is crucial towards the development of effective NDV oncolytic therapy against cancer.

    Matched MeSH terms: Up-Regulation
  8. Shakya R, Tarulli GA, Sheng L, Lokman NA, Ricciardelli C, Pishas KI, et al.
    Oncogene, 2017 08;36(31):4469-4480.
    PMID: 28368395 DOI: 10.1038/onc.2017.66
    Missense mutations in the TP53 tumor-suppressor gene inactivate its antitumorigenic properties and endow the incipient cells with newly acquired oncogenic properties that drive invasion and metastasis. Although the oncogenic effect of mutant p53 transcriptome has been widely acknowledged, the global influence of mutant p53 on cancer cell proteome remains to be fully elucidated. Here, we show that mutant p53 drives the release of invasive extracellular factors (the 'secretome') that facilitates the invasion of lung cancer cell lines. Proteomic characterization of the secretome from mutant p53-inducible H1299 human non-small cell lung cancer cell line discovered that the mutant p53 drives its oncogenic pathways through modulating the gene expression of numerous targets that are subsequently secreted from the cells. Of these genes, alpha-1 antitrypsin (A1AT) was identified as a critical effector of mutant p53 that drives invasion in vitro and in vivo, together with induction of epithelial-mesenchymal transition markers expression. Mutant p53 upregulated A1AT transcriptionally through the involvement with its family member p63. Conditioned medium containing secreted A1AT enhanced cell invasion, while an A1AT-blocking antibody attenuated the mutant p53-driven migration and invasion. Importantly, high A1AT expression correlated with increased tumor stage, elevated p53 staining and shorter overall survival in lung adenocarcinoma patients. Collectively, these findings suggest that A1AT is an indispensable target of mutant p53 with prognostic and therapeutic potential in mutant p53-expressing tumors.
    Matched MeSH terms: Up-Regulation
  9. Yasmin Anum, M.Y., Shahriza, Z.A., Looi, ML, Shafina Hanim, M.H., Harlianshah, H., Noor Aini, A.H., et al.
    Medicine & Health, 2008;3(2):263-274.
    MyJurnal
    Ginger extract has been reported previously by our group to exhibit anticancer and an-tioxidant effects by reducing tumour burden and lipid peroxidation respectively in he-patocarcinogenesis induced rats. The current study examined the expression of pro-apoptotic protein caspase-8 and anti-apoptotic protein Bcl-2 in hepatocarcinogenesis treated rats. Thirty normal male Wistar rats were divided into 5 groups based on the diet given: i) control (normal rat chow), ii) olive oil, iii) ginger extract (100mg/kg body weight), iv) choline deficient diet + ethionine, CDE (to induce liver cancer) and v) CDE+ ginger extract. Rats were killed at week 8, and liver tissues were excised for immuno-histochemical study to identify pro-apoptotic and anti-apoptotic proteins, caspase-8 and Bcl-2. The observation on H&E staining confirmed the CDE diet induced liver can-cer as indicated by the presence of numerous oval cells. Identification of Bcl-2 expres-sion showed that 91.6% (11/12) of the samples from the CDE group revealed positive staining while treatment with ginger extract however inhibited the expression with only 8.4% (1/12) samples showing positive staining for Bcl-2. As for caspase-8 protein, 41.7% (5/12) of the samples from CDE group showed positive staining, which in-creased to 100% (12/12) with ginger extract treatment. Our findings suggest that gin-ger extract has an anticancer effect by inducing apoptosis in liver cancer cells via up-regulation of the expression of pro-apoptotic protein, caspase-8 and down-regulation of the expression of anti-apoptotic protein Bcl-2.
    Matched MeSH terms: Up-Regulation
  10. Li W, Kandhare AD, Mukherjee AA, Bodhankar SL
    EXCLI J, 2018;17:399-419.
    PMID: 29805347 DOI: 10.17179/excli2018-1036
    Background: Delayed wound healing is a diverse, multifactorial, complex and inter-related complication of diabetes resulting in significant clinical morbidity. Hesperidin possesses potent antidiabetic and wound healing activity. Aim: To evaluate the potential of hesperidin against experimentally induced diabetes foot ulcers. Methods: Diabetes was induced experimentally by streptozotocin (STZ, 55 mg/kg, i.p.) in Sprague Dawley rats (180-220 g) and wounds were created on the dorsal surface of the hind paw of rats. Hesperidin (25, 50 and 100 mg/kg, p.o.) was administered for 21 days after wound stabilization. Various biochemical, molecular and histopathological parameters were evaluated in wound tissue. Results: STZ-induced decrease in body weight and increase in blood glucose, food, and water intake was significantly (p < 0.05) inhibited by hesperidin (50 and 100 mg/kg) treatment. It showed a significant increase (p < 0.05) in percent wound closure and serum insulin level. The STZ-induced decrease in SOD and GSH level, as well as elevated MDA and NO levels, were significantly (p < 0.05) attenuated by hesperidin (50 and 100 mg/kg) treatment. Intraperitoneal administration of STZ caused significant down-regulation in VEGF-c, Ang-1, Tie-2, TGF-β and Smad 2/3 mRNA expression in wound tissues whereas hesperidin (50 and 100 mg/kg) treatment showed significant up-regulation in these mRNA expressions. STZ-induced alteration in would architecture was also attenuated by hesperidin (50 and 100 mg/kg) treatment. Conclusion: Together, treatment with hesperidin accelerate angiogenesis and vasculogenesis via up-regulation of VEGF-c, Ang-1/Tie-2, TGF-β and Smad-2/3 mRNA expression to enhance wound healing in chronic diabetic foot ulcers.
    Matched MeSH terms: Up-Regulation
  11. Ubuka T, Moriya S, Soga T, Parhar I
    PMID: 29643838 DOI: 10.3389/fendo.2018.00139
    Perinatal exposure of Bisphenol A (BPA) to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH) promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2), an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1), an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir) cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by modifying Tmprss2 and Foxa1 expressions in the brain.
    Matched MeSH terms: Up-Regulation
  12. Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY
    PeerJ, 2018;6:e4940.
    PMID: 29888137 DOI: 10.7717/peerj.4940
    Background: The highly valued medicinal tiger milk mushroom (also known as Lignosus rhinocerus) has the ability to cure numerous ailments. Its anticancer activities are well explored, and recently a partially purified cytotoxic protein fraction termed F5 from the mushroom's sclerotial cold water extract consisting mainly of fungal serine proteases was found to exhibit potent selective cytotoxicity against a human breast adenocarcinoma cell line (MCF7) with IC50 value of 3.00 μg/ml. However, characterization of its cell death-inducing activity has yet to be established.

    Methods: The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus's published genome and transcriptome for future exploration.

    Results and Discussion: Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5' splice site.

    Conclusions: Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.

    Matched MeSH terms: Up-Regulation
  13. Kabir MF, Mohd Ali J, Haji Hashim O
    PeerJ, 2018;6:e5203.
    PMID: 30042885 DOI: 10.7717/peerj.5203
    Background: We have previously reported anticancer activities of Melicope ptelefolia (MP) leaf extracts on four different cancer cell lines. However, the underlying mechanisms of actions have yet to be deciphered. In the present study, the anticancer activity of MP hexane extract (MP-HX) on colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines was characterized through microarray gene expression profiling.

    Methods: HCT116 and HepG2 cells were treated with MP-HX for 24 hr. Total RNA was extracted from the cells and used for transcriptome profiling using Applied Biosystem GeneChip™ Human Gene 2.0 ST Array. Gene expression data was analysed using an Applied Biosystems Expression Console and Transcriptome Analysis Console software. Pathway enrichment analyses was performed using Ingenuity Pathway Analysis (IPA) software. The microarray data was validated by profiling the expression of 17 genes through quantitative reverse transcription PCR (RT-qPCR).

    Results: MP-HX induced differential expression of 1,290 and 1,325 genes in HCT116 and HepG2 cells, respectively (microarray data fold change, MA_FC ≥ ±2.0). The direction of gene expression change for the 17 genes assayed through RT-qPCR agree with the microarray data. In both cell lines, MP-HX modulated the expression of many genes in directions that support antiproliferative activity. IPA software analyses revealed MP-HX modulated canonical pathways, networks and biological processes that are associated with cell cycle, DNA replication, cellular growth and cell proliferation. In both cell lines, upregulation of genes which promote apoptosis, cell cycle arrest and growth inhibition were observed, while genes that are typically overexpressed in diverse human cancers or those that promoted cell cycle progression, DNA replication and cellular proliferation were downregulated. Some of the genes upregulated by MP-HX include pro-apoptotic genes (DDIT3, BBC3, JUN), cell cycle arresting (CDKN1A, CDKN2B), growth arrest/repair (TP53, GADD45A) and metastasis suppression (NDRG1). MP-HX downregulated the expression of genes that could promote anti-apoptotic effect, cell cycle progression, tumor development and progression, which include BIRC5, CCNA2, CCNB1, CCNB2, CCNE2, CDK1/2/6, GINS2, HELLS, MCM2/10 PLK1, RRM2 and SKP2. It is interesting to note that all six top-ranked genes proposed to be cancer-associated (PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2) were downregulated by MP-HX in both cell lines.

    Discussion: The present study showed that the anticancer activities of MP-HX are exerted through its actions on genes regulating apoptosis, cell proliferation, DNA replication and cell cycle progression. These findings further project the potential use of MP as a nutraceutical agent for cancer therapeutics.

    Matched MeSH terms: Up-Regulation
  14. Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM
    Microbiol Res, 2018 Oct;215:46-54.
    PMID: 30172308 DOI: 10.1016/j.micres.2018.06.006
    Bacillus lehensis G1 is an alkaliphilic bacterium that is capable of surviving in environments up to pH 11. Secretome related to bacterial acclimation in alkaline environment has been less studied compared to cytoplasmic and membrane proteome. The aim of this study was to gain better understanding of bacterial acclimation to alkaline media through analyzing extracellular proteins of B. lehensis. The pH range for B. lehensis growth was conducted, and two-dimensional electrophoresis and MALDI-TOF/TOF MS analysis were conducted to characterize changes in protein profiling in B. lehensis cultured at pH 8 and pH 11 when compared with those cultured at pH 10 (optimal growth pH). B. lehensis could grow well at pH ranging from 8 to 11 in which the bacteria showed to posses thinner flagella at pH 11. Proteomic analyses demonstrated that five proteins were up-regulated and 13 proteins were down-regulated at pH 8, whereas at pH 11, 14 proteins were up-regulated and 8 were down-regulated. Majority of the differentially expressed proteins were involved in the cell wall, main glycolytic pathways, the metabolism of amino acids and related molecules and some proteins of unknown function. A total of 40 differentially expressed protein spots corresponding to 33 proteins were identified; including GlcNAc-binding protein A, chitinase, endopeptidase lytE, flagellar hook-associated proteins and enolase. These proteins may play important roles in acclimation to alkaline media via reallocation of cell wall structure and changes to cell surface glycolytic enzymes, amino acid metabolism, flagellar hook-associated proteins and chaperones to sustain life under pH-stressed conditions.
    Matched MeSH terms: Up-Regulation
  15. Yap MKK, Misuan N
    PMID: 30417596 DOI: 10.1111/bcpt.13169
    Type II diabetes mellitus (T2DM) is a chronic non-communicable disease due to abnormal insulin actions causing uncontrolled hyperglycaemia. The treatment for T2DM, for instance, metformin and incretin mimetic, mainly focuses on the restoration of insulin sensitivity and secretion. Exendin-4 is a short incretin-mimetic peptide consisting of 39 amino acids. It is discovered in the venom of Heloderma suspectum as a full agonist for the glucagon-like peptide 1 (GLP-1) receptor and produces insulinotropic effects. It is more resistant to enzymatic degradation by dipeptidyl-peptidase-4 and has a longer half-life than the endogenous GLP-1; thus, it is further developed as an incretin hormone analogue used to treat T2DM. The helical region of the peptide first interacts with the extracellular N-terminal domain (NTD) of GLP-1 receptor while the C-terminal extension containing the tryptophan cage further enhances its binding affinity. After binding to the NTD of the receptor, it may cause the receptor to switch from its auto-inhibited state of the receptor to its auto-activated state. Exendin-4 enhances the physiological functions of β-cells and the up-regulation of GLP-1 receptors, thus reducing the plasma glucose levels. Moreover, exendin-4 has also been found to ameliorate neuropathy, nephropathy and ventricular remodelling. The therapeutic effects of exendin-4 have also been extrapolated into several clinical trials. Although exendin-4 has a reasonable subcutaneous bioavailability, its half-life is rather short. Therefore, several modifications have been undertaken to improve its pharmacokinetics and insulinotropic potency. This review focuses on the pharmacology of exendin-4 and the structure-function relationships of exendin-4 with GLP-1 receptor. The review also highlights some challenges and future directions in the improvement of exendin-4 as an anti-diabetic drug.
    Matched MeSH terms: Up-Regulation
  16. Yap Wei Boon, Shaktypreya Nadarajah, Nadiah Shidik, Noorjahan Banu Mohammed Alitheen
    Jurnal Sains Kesihatan Malaysia, 2018;16(101):15-22.
    MyJurnal
    Breast cancer is one of the commonest cancers among women. Conventional therapies cause adverse side effects in patients. Cytokine immunotherapy such as interleukin-27 (IL-27) has been sought as an alternative cancer treatment in recent years. IL-27 has been shown to improve anticancer immunity and anti-angiogenesis in cancers, however, its effect on apoptotic and anti-apoptotic gene expression especially in breast cancers is yet to be explored. Cytotoxicity of IL-27 in non-cancerous (184b5) and cancerous (MCF-7 and MDA-MB-231) breast cell lines was first determined for 24-72 h in this study. The results indicated that IL-27 treatment did not retard 184b5 cell growth, however, did inhibit MCF-7 (48 h) and MDA-MB-231 (72 h) cell growth with IC50 at 442 and 457 ng/ml, respectively. Apoptotic (TRAIL, FADD, FAS, caspase-3 and caspase-8) and anti-apoptotic (BCL-2, AKT, and COX-2) genes were then amplified from untreated (control) and treated breast cancer cells and studied. TRAIL, caspase-3, caspase-8 gene expression was significantly (p < 0.05) upregulated in treated MCF-7 (442 ng/ml) and MDA-MB-231 (457 ng/ml) cells. Expression of FADD and FAS genes was not detected in both control and treated MCF-7 and MDA-MB-231 cells. COX-2 gene was also not expressed by MCF-7 cells, but reduced significantly (p < 0.05) in treated MDA-MB-231 cells. In MDA-MB-231 cells, IL-27 treatment seemed to slightly enhance the expression of AKT and BCL-2 genes which, on the other hand, was downregulated in treated MCF-7 cells. Conclusively, IL-27 is able to inhibit breast cancer cell growth and regulate apoptotic and anti-apoptotic gene expression in breast cancer cells.
    Matched MeSH terms: Up-Regulation
  17. Aliyu A, Shaari MR, Ahmad Sayuti NS, Reduan MFH, Sithambaram S, Noordin MM, et al.
    Cancers (Basel), 2020 Mar 13;12(3).
    PMID: 32183192 DOI: 10.3390/cancers12030678
    Chemical carcinogens are commonly used to investigate the biology and prognoses of various cancers. This study investigated the mechanism of leukaemogenic effects of n-ethyl-n-nitrosourea (ENU) in a mouse model. A total of 14 3-week-old male Institute of Cancer Research (ICR)-mice were used for the study. The mice were divided into groups A and B with seven mice each. Group A served as the control while group B received intraperitoneal (IP) injections of 80 mg/kg ENU twice with a one-week interval and were monitored monthly for 3 months for the development of leukaemia via blood smear examination. The mice were sacrificed humanely using a CO2 chamber. Blood, spleen, lymph nodes, liver, kidney and lung samples were collected for blood smear examination and histopathological evaluation. The expression of angiogenic protein (VEGF), and pro and anti-apoptotic proteins (BCL2 and BAX), was detected and quantified using Western blot technique. Leukaemia was confirmed by the presence of numerous blast cells in the peripheral blood smear in group B. Similarly, the VEGF and BCL2 proteins were significantly (p < 0.05) upregulated in group B compared to A. It is concluded that IP administration of 80 mg/kg ENU induced leukaemia in ICR-mice 12 weeks post administration through upregulation of angiogenic and anti-apoptotic proteins: VEGF and BCL2.
    Matched MeSH terms: Up-Regulation
  18. Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al.
    Genes (Basel), 2017 Oct 20;8(10).
    PMID: 29053567 DOI: 10.3390/genes8100281
    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
    Matched MeSH terms: Up-Regulation
  19. Albishtue AA, Yimer N, Zakaria MZA, Haron AW, Yusoff R, Assi MA, et al.
    Vet World, 2018 Jan;11(1):71-79.
    PMID: 29479160 DOI: 10.14202/vetworld.2018.71-79
    Aim: This study aimed to evaluate the effect of edible bird's nest (EBN) supplementation on the uteri of rats based on analyses of the morphological and histomorphometric changes, and expressions of epidermal growth factor (EGF) and its receptor (REGF) genes, vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), and steroid receptors.

    Materials and Methods: Twenty-four: Sprague Dawley rats were equally distributed into the following four groups: G1 (control), G2, G3, and G4 represented the groups treated with EBN at graded concentrations of 0, 30, 60, and 120 mg/kg body weight (BW) per day for 8 weeks, respectively. During the experimental period, the BW of each rat was recorded weekly. At the proestrus stage of estrous cycle, blood samples were collected from the hearts of anesthetized rats that were later sacrificed. The uteri were removed for histological and immunohistochemical analyses.

    Results: The EBN-treated groups showed an increase in the weights and lengths of uteri as compared to the control. Results showed that relative to G1 and G2, G3 and G4 exhibited proliferation in their uterine luminal and glandular epithelia and uterine glands, and up-regulated expressions of EGF, REGF, VEGF, PCNA, and progesterone receptor, and estrogen receptor in their uteri. The EBN increased the antioxidant (AO) and total AO capacities and reduced the oxidative stress (OS) levels in non-pregnant rats.

    Conclusion: Findings of this study revealed that EBN promotes proliferation of the uterine structures as evidenced by the upregulation of the expressions of steroid receptors, EGF, REGF, VEGF, and PCNA in the uterus and increased in the plasma concentrations of AO and reduced levels of OS.

    Matched MeSH terms: Up-Regulation
  20. Lozić M, Tasić T, Martin A, Greenwood M, Šarenac O, Hindmarch C, et al.
    Pharmacol Res, 2016 12;114:185-195.
    PMID: 27810519 DOI: 10.1016/j.phrs.2016.10.024
    The hypothalamic paraventricular nucleus (PVN) is a key integrative site for the neuroendocrine control of the circulation and of the stress response. It is also a major source of the neuropeptide hormone vasopressin (VP), and co-expresses V1a receptors (V1aR). We thus sought to investigate the role of V1aR in PVN in cardiovascular control in response to stress. Experiments were performed in male Wistar rats equipped with radiotelemetric device. The right PVN was transfected with adenoviral vectors (Ads) engineered to over-express V1aR along with an enhanced green fluorescent protein (eGFP) tag. Control groups were PVN transfected with Ads expressing eGFP alone, or wild-type rats (Wt). Rats were recorded with and without selective blockade of V1aR (V1aRX) in PVN under both baseline and stressed conditions. Blood pressure (BP), heart rate (HR), their short-term variabilities, and baroreflex sensitivity (BRS) were evaluated using spectral analysis and the sequence method, respectively. Under baseline physiological conditions,V1aR rats exhibited reduced BRS and a marked increase of BP and HR variability during exposure to stress. These effects were all prevented by V1aRX pretreatment. In Wt rats, V1aRX did not modify cardiovascular parameters under baseline conditions, and prevented BP variability increase by stress. However, V1aRX pretreatment did not modify baroreflex desensitization by stress in either rat strain. It follows that increased expression of V1aR in PVN influences autonomic cardiovascular regulation and demarcates vulnerability to stress. We thus suggest a possible role of hypothalamic V1aR in cardiovascular pathology.
    Matched MeSH terms: Up-Regulation
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links