Displaying publications 121 - 140 of 451 in total

Abstract:
Sort:
  1. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, et al.
    Mol Ecol, 2016 May;25(10):2244-57.
    PMID: 26994316 DOI: 10.1111/mec.13620
    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  2. Tan CK, Natrah I, Suyub IB, Edward MJ, Kaman N, Samsudin AA
    Microbiologyopen, 2019 05;8(5):e00734.
    PMID: 30353678 DOI: 10.1002/mbo3.734
    AIMS: The aim of this study was to identify and compare the gut microbial community of wild and captive Tor tambroides through 16S rDNA metagenetic sequencing followed by functions prediction.

    METHODS AND RESULTS: The library of 16S rDNA V3-V4 hypervariable regions of gut microbiota was amplified and sequenced using Illumina MiSeq. The sequencing data were analyzed using Quantitative Insights into Microbial Ecology (QIIME) pipeline and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The most abundant bacterial phyla in both wild and captive T. tambroides were Firmicutes, Proteobacteria, Fusobacteria and Bacteroidetes. Cetobacterium spp., Peptostreptococcaceae family, Bacteroides spp., Phosphate solubilizing bacteria PSB-M-3, and Vibrio spp. were five most abundant OTU in wild T. tambroides as compared to Cetobacterium spp., Citrobacter spp., Aeromonadaceae family, Peptostreptococcaceae family and Turicibacter spp. in captive T. tambroides.

    CONCLUSION: In this study, the specimens of the wild T. tambroides contain more diverse gut microbiota than of the captive ones. The results suggested that Cetobacterium spp. is one of the core microbiota in guts of T. tambroides. Besides, high abundant Bacteroides spp., Citrobacter spp., Turicibacter spp., and Bacillus spp. may provide important functions in T. tambroides guts.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study provide significant information of T. tambroides gut microbiota for further understanding of their physiological functions including growth and disease resistance.

    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  3. Law JW, Chan KG, He YW, Khan TM, Ab Mutalib NS, Goh BH, et al.
    Sci Rep, 2019 12 03;9(1):15262.
    PMID: 31792235 DOI: 10.1038/s41598-019-51622-x
    Streptomycetes have been the center of attraction within scientific community owing to their capability to produce various bioactive compounds, for instance, with different antimicrobial, anticancer, and antioxidant properties. The search for novel Streptomyces spp. from underexplored area such as mangrove environment has been gaining attention since these microorganisms could produce pharmaceutically important metabolites. The aim of this study is to discover the diversity of Streptomyces spp. from mangrove in Sarawak and their bioactive potentials - in relation to antioxidant and cytotoxic activities. A total of 88 Streptomyces isolates were successfully recovered from the mangrove soil in Kuching, state of Sarawak, Malaysia. Phylogenetic analysis of all the isolates and their closely related type strains using 16S rRNA gene sequences resulted in 7 major clades in the phylogenetic tree reconstructed based on neighbour-joining algorithm. Of the 88 isolates, 18 isolates could be considered as potentially novel species according to the 16S rRNA gene sequence and phylogenetic analyses. Preliminary bioactivity screening conducted on the potential novel Streptomyces isolates revealed significant antioxidant activity and notable cytotoxic effect against tested colon cancer cell lines (HCT-116, HT-29, Caco-2, and SW480), with greater cytotoxicity towards SW480 and HT-29 cells. This study highlighted that the Sarawak mangrove environment is a rich reservoir containing streptomycetes that could produce novel secondary metabolites with antioxidant and cytotoxic activities.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  4. Groth I, Tan GYA, González JM, Laiz L, Carlsohn MR, Schütze B, et al.
    Int J Syst Evol Microbiol, 2007 Mar;57(Pt 3):513-519.
    PMID: 17329776 DOI: 10.1099/ijs.0.64602-0
    The taxonomic status of two actinomycetes isolated from the wall of a hypogean Roman catacomb was established based on a polyphasic investigation. The organisms were found to have chemical and morphological markers typical of members of the genus Amycolatopsis. They also shared a range of chemical, molecular and phenotypic markers which served to separate them from representatives of recognized Amycolatopsis species. The new isolates formed a branch in the Amycolatopsis 16S rRNA gene sequence tree with Amycolatopsis minnesotensis NRRL B-24435(T), but this association was not supported by a particularly high bootstrap value or by the product of the maximum-parsimony tree-making algorithm. The organisms were distinguished readily from closely related Amycolatopsis species based on a combination of phenotypic properties and from all Amycolatopsis strains by their characteristic menaquinone profiles, in which tetra-hydrogenated menaquinones with 11 isoprene units predominated. The combined genotypic and phenotypic data indicate that the isolates merit recognition as representing a novel species of the genus Amycolatopsis. The name proposed for this novel species is Amycolatopsis nigrescens sp. nov., with type strain CSC17Ta-90(T) (=HKI 0330(T)=DSM 44992(T)=NRRL B-24473(T)).
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  5. Tripathi BM, Kim M, Lai-Hoe A, Shukor NA, Rahim RA, Go R, et al.
    FEMS Microbiol Ecol, 2013 Nov;86(2):303-11.
    PMID: 23773164 DOI: 10.1111/1574-6941.12163
    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  6. Zainudin MHM, Ramli N, Hassan MA, Shirai Y, Tashiro K, Sakai K, et al.
    J Ind Microbiol Biotechnol, 2017 06;44(6):869-877.
    PMID: 28197796 DOI: 10.1007/s10295-017-1916-1
    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  7. Low VL, Prakash BK
    Exp Appl Acarol, 2018 Jul;75(3):299-307.
    PMID: 30066112 DOI: 10.1007/s10493-018-0279-2
    The brown dog tick Rhipicephalus sanguineus sensu lato (s.l.) is a species complex comprising three main mitochondrial lineages, namely tropical, temperate and southeast European lineages. Despite its medical and veterinary importance, little attention has been paid to the genetic lineage of this species in Southeast Asia. Rhipicephalus sanguineus s.l. from Malaysia was investigated genetically, for the first time, using the mitochondria-encoded cytochrome c oxidase subunit I (COI) and 16S ribosomal RNA (16S) genes. Specifically, a pair of primers was developed to amplify the COI sequences in the present study. Both genes unambiguously assigned Malaysian material into the tropical lineage of R. sanguineus s.l. The 16S sequences were highly conserved; no variation site was observed. The COI sequences revealed slightly higher variation by recovering four haplotypes, one of which is restricted to the northernmost of Peninsular Malaysia. This finding will be a stepping stone in promoting more biological studies of this species complex in this region.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  8. Tripathi BM, Lee-Cruz L, Kim M, Singh D, Go R, Shukor NA, et al.
    Microb Ecol, 2014 Aug;68(2):247-58.
    PMID: 24658414
    Spatial scaling to some extent determines biodiversity patterns in larger organisms, but its role in microbial diversity patterns is much less understood. Some studies have shown that bacterial community similarity decreases with distance, whereas others do not support this. Here, we studied soil bacterial communities of tropical rainforest in Malaysia at two spatial scales: a local scale with samples spaced every 5 mover a 150-m transect, and a regional scale with samples 1 to 1,800 km apart. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1–V3 region was pyrosequenced using Roche/454 GS FLX Titanium platform. A ranked partial Mantel test showed a weak correlation between spatial distance and whole bacterial community dissimilarity, but only at the local scale. In contrast, environmental distance was highly correlated with community dissimilarity at both spatial scales,stressing the greater role of environmental variables rather than spatial distance in determining bacterial community variation at different spatial scales. Soil pH was the only environmental parameter that significantly explained the variance in bacterial community at the local scale, whereas total nitrogen and elevation were additional important factors at the regional scale.We obtained similar results at both scales when only the most abundant OTUs were analyzed. A variance partitioning analysis showed that environmental variables contributed more to bacterial community variation than spatial distance at both scales. In total, our results support a strong influence of the environment in determining bacterial community composition in the rainforests of Malaysia. However, it is possible that the remaining spatial distance effect is due to some of the myriad of other environmental factors which were not considered here, rather than dispersal limitation.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  9. Pin Viso N, Redondo E, Díaz Carrasco JM, Redondo L, Sabio Y Garcia J, Fernández Miyakawa M, et al.
    PLoS One, 2021;16(1):e0244724.
    PMID: 33406150 DOI: 10.1371/journal.pone.0244724
    The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genotype, or geographical origin of birds. The aim of the present study was to demonstrate the influence of the geographical location over the cecal microbiota from broilers. We used metabarcoding sequencing datasets of the 16S rRNA gene publicly available to compare the composition of the Argentine microbiota against the microbiota of broilers from another seven countries (Germany, Australia, Croatia, Slovenia, United States of America, Hungary, and Malaysia). Geographical location played a dominant role in shaping chicken gut microbiota (Adonis R2 = 0.6325, P = 0.001; Mantel statistic r = 0.1524, P = 4e-04) over any other evaluated factor. The geographical origin particularly affected the relative abundance of the families Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. Because of the evident divergence of microbiota among countries we coined the term "local microbiota" as convergent feature that conflates non-genetic factors, in the perspective of human-environmental geography. Local microbiota should be taken into consideration as a native overall threshold value for further appraisals when testing the production performance and performing correlation analysis of gut microbiota modulation against different kind of diet and/or management approaches. In this regard, we described the Argentine poultry cecal microbiota by means of samples both from experimental trials and commercial farms. Likewise, we were able to identify a core microbiota composed of 65 operational taxonomic units assigned to seven phyla and 38 families, with the four most abundant taxa belonging to Bacteroides genus, Rikenellaceae family, Clostridiales order, and Ruminococcaceae family.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  10. Lim HK, Syed MA, Shukor MY
    J Basic Microbiol, 2012 Jun;52(3):296-305.
    PMID: 22052341 DOI: 10.1002/jobm.201100121
    A novel molybdate-reducing bacterium, tentatively identified as Klebsiella sp. strain hkeem and based on partial 16s rDNA gene sequencing and phylogenetic analysis, has been isolated. Strain hkeem produced 3 times more molybdenum blue than Serratia sp. strain Dr.Y8; the most potent Mo-reducing bacterium isolated to date. Molybdate was optimally reduced to molybdenum blue using 4.5 mM phosphate, 80 mM molybdate and using 1% (w/v) fructose as a carbon source. Molybdate reduction was optimum at 30 °C and at pH 7.3. The molybdenum blue produced from cellular reduction exhibited absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide, and potassium cyanide did not inhibit the molybdenum-reducing enzyme. Mercury, silver, and copper at 1 ppm inhibited molybdenum blue formation in whole cells of strain hkeem.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  11. Chua CY, Wong CMVL
    Can J Microbiol, 2021 Jan;67(1):64-74.
    PMID: 33084348 DOI: 10.1139/cjm-2019-0461
    The effects of global warming are increasingly evident, where global surface temperatures and atmospheric concentration of carbon dioxide have increased in past decades. Given the role of terrestrial bacteria in various ecological functions, it is important to understand how terrestrial bacteria would respond towards higher environmental temperatures. This study aims to determine soil bacterial diversity in the tropics and their response towards in situ warming using an open-top chamber (OTC). OTCs were set up in areas exposed to sunlight throughout the year in the tropical region in Malaysia. Soil samples were collected every 3 months to monitor changes in bacterial diversity using V3-V4 16S rDNA amplicon sequencing inside the OTCs (treatment plots) and outside the OTCs (control plots). After 12 months of simulated warming, an average increase of 0.81 to 1.15 °C was recorded in treatment plots. Significant changes in the relative abundance of bacterial phyla such as Bacteroidetes and Chloroflexi were reported. Increases in the relative abundance of Actinobacteria were also observed in treatment plots after 12 months. Substantial changes were observed at the genus level, where most bacterial genera decreased in relative abundance after 12 months. This study demonstrated that warming can alter soil bacteria in tropical soils from Kota Kinabalu.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  12. Choo SW, Rishik S, Wee WY
    Microb Genom, 2020 12;6(12).
    PMID: 33295861 DOI: 10.1099/mgen.0.000495
    Mycobacteroides immunogenum is an emerging opportunistic pathogen implicated in nosocomial infections. Comparative genome analyses may provide better insights into its genomic structure, functions and evolution. The present analysis showed that M. immunogenum has an open pan-genome. Approximately 36.8% of putative virulence genes were identified in the accessory regions of M. immunogenum. Phylogenetic analyses revealed two potential novel subspecies of M. immunogenum, supported by evidence from ANIb (average nucleotide identity using blast) and GGDC (Genome to Genome Distance Calculator) analyses. We identified 74 genomic islands (GIs) in Subspecies 1 and 23 GIs in Subspecies 2. All Subspecies 2-harboured GIs were not found in Subspecies 1, indicating that they might have been acquired by Subspecies 2 after their divergence. Subspecies 2 has more defence genes than Subspecies 1, suggesting that it might be more resistant to the insertion of foreign DNA and probably explaining why Subspecies 2 has fewer GIs. Positive selection analysis suggest that M. immunogenum has a lower selection pressure compared to non-pathogenic mycobacteria. Thirteen genes were positively selected and many were involved in virulence.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  13. Amin AKMR, Tanaka M, Al-Saari N, Feng G, Mino S, Ogura Y, et al.
    Syst Appl Microbiol, 2017 Jul;40(5):290-296.
    PMID: 28648725 DOI: 10.1016/j.syapm.2017.04.003
    Two phylogenetically distinct Vibrionaceae strains C4II189Tand C4V358Tisolated from reef seawater off Ishigaki Island, Japan, in 2014 were studied with advanced genome-based taxonomy approaches. All aspects of phylogenetic (16S rRNA phylogeny, MLSA), phenotypic and genetic (ANI, DDH, AAI, and the number of core genes) cohesions between the two identified species were high enough to propose them as members of a new genus within the family Vibrionaceae. Consequently, an eighth genus Thaumasiovibrio gen. nov. is proposed that contains two new species Thaumasiovibrio occultus sp. nov. strain C4II189T(=DSM 101554T=JCM 31629T) (type species) and Thaumasiovibrio subtropicus sp. nov. strain C4V358T(=DSM 101555T=JCM 31630T). Thaumasiovibrio species were phylogenetically distinct from the other Vibrionaceae species based on pyrH gene sequences. The combination of catalase negative, sensitivity to vibriostatic agent O/129, and green colony formation on TCBS for the phylogenetically affiliated strains was the diagnostic features for the current tentative identification of this genus.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  14. Takeuchi Y, Chaffron S, Salcher MM, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, et al.
    Syst Appl Microbiol, 2015 Jul;38(5):330-9.
    PMID: 26138047 DOI: 10.1016/j.syapm.2015.05.006
    Pitchers are modified leaves used by carnivorous plants for trapping prey. Their fluids contain digestive enzymes from the plant and they harbor abundant microbes. In this study, the diversity of bacterial communities was assessed in Nepenthes pitcher fluids and the composition of the bacterial community was compared to that in other environments, including the phyllosphere of Arabidopsis, animal guts and another pitcher plant, Sarracenia. Diversity was measured by 454 pyrosequencing of 16S rRNA gene amplicons. A total of 232,823 sequences were obtained after chimera and singleton removal that clustered into 3260 distinct operational taxonomic units (OTUs) (3% dissimilarity), which were taxonomically distributed over 17 phyla, 25 classes, 45 orders, 100 families, and 195 genera. Pyrosequencing and fluorescence in situ hybridization yielded similar estimates of community composition. Most pitchers contained high proportions of unique OTUs, and only 22 OTUs (<0.6%) were shared by ≥14/16 samples, suggesting a unique bacterial assemblage in each pitcher at the OTU level. Diversity analysis at the class level revealed that the bacterial communities of both opened and unopened pitchers were most similar to that of Sarracenia and to that in the phyllosphere. Therefore, the bacterial community in pitchers may be formed by environmental filtering and/or by phyllosphere bacteria.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  15. Lee HY, Loong SK, Ya'cob Z, Low VL, Teoh BT, Ahmad-Nasrah SN, et al.
    Acta Trop, 2021 Jul;219:105923.
    PMID: 33878305 DOI: 10.1016/j.actatropica.2021.105923
    Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  16. Yang X, Xiang R, Iqbal NM, Duan YH, Zhang XA, Wang L, et al.
    Curr Microbiol, 2021 Apr;78(4):1648-1655.
    PMID: 33651189 DOI: 10.1007/s00284-021-02431-x
    Phycosphere hosts the boundary of unique holobionts harboring dynamic algae-bacteria interactions. During our investigating the microbial consortia composition of phycosphere microbiota (PM) derived from diverse harmful algal blooms (HAB) dinoflagellates, a novel rod-shaped, motile and faint yellow-pigmented bacterium, designated as strain LZ-6 T, was isolated from HAB Alexandrium catenella LZT09 which produces high levels paralytic shellfish poisoning toxins. Phylogenetic analysis based on 16S rRNA gene and two housekeeping genes, rpoA and pheS sequences showed that the novel isolate shared the highest gene similarity with Marinobacter shengliensis CGMCC 1.12758 T (99.6%) with the similarity values of 99.6%, 99.9% and 98.5%, respectively. Further phylogenomic calculations of average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strains LZ-6 T and the type strain of M. shengliensis were 95.9%, 96.4% and 68.5%, respectively. However, combined phenotypic and chemotaxonomic characterizations revealed that the new isolate was obviously different from the type strain of M. shengliensis. The obtained taxonomic evidences supported that strain LZ-6 T represents a novel subspecies of M. shengliensis, for which the name is proposed, Marinobacter shengliensis subsp. alexandrii subsp. nov. with the type strain LZ-6 T (= CCTCC AB 2018388TT = KCTC 72197 T). This proposal automatically creates Marinobacter shengliensis subsp. shengliensis for which the type strain is SL013A34A2T (= LMG 27740 T = CGMCC 1.12758 T).
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  17. Abdullahi S, Haris H, Zarkasi KZ, Amir HG
    J Basic Microbiol, 2021 Apr;61(4):293-304.
    PMID: 33491813 DOI: 10.1002/jobm.202000695
    Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  18. Ding CH, Wahab AA, Muttaqillah NAS, Kamarudin N, Saarah WR
    Trop Biomed, 2019 Dec 01;36(4):883-887.
    PMID: 33597461
    Shewanella spp. are infrequently implicated in human infections but they are emerging pathogens with particular significance in regions with warm climates, such as Southeast Asia. This is a case of a middle-aged diabetic and hypertensive man who presented with worsening congestive heart failure symptoms associated with fever and a painful right leg. His right leg had numerous scabs and was tender, warm and erythematous. He was provisionally diagnosed with decompensated heart failure precipitated by cellulitis and uncontrolled hypertension. His blood grew non-fermentative, oxidase-positive and motile gram-negative bacilli which produced hydrogen sulfide on triple sugar iron agar. When cultured on blood agar, mucoid and weakly β-haemolytic colonies were observed after 48 hours. API 20 NE named the isolate as Shewanella putrefaciens but 16S rRNA sequence analysis identified the organism as Shewanella algae. The patient was treated with a 10-day course of ceftazidime, which resulted in the resolution of the cellulitis.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  19. Pavlova A, Gan HM, Lee YP, Austin CM, Gilligan DM, Lintermans M, et al.
    Heredity (Edinb), 2017 05;118(5):466-476.
    PMID: 28051058 DOI: 10.1038/hdy.2016.120
    Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6113) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links