Displaying publications 121 - 140 of 1308 in total

Abstract:
Sort:
  1. Hashim OH, Gendeh GS, Jaafar MI
    Biochem. Mol. Biol. Int., 1993 Jan;29(1):69-76.
    PMID: 8490570
    Purified lectins from seeds of six distinct clones of Artocarpus integer (lectin C) were shown to be structurally and functionally similar. All lectins comprised of two types of non-covalently-linked subunits with apparent M(r) of 13,300 and 16,000. The lectins appeared to interact with several human serum proteins, with the predominance of the IgA1 and C1 inhibitor molecules. Interaction was not detected with IgA2, IgD, IgG and IgM. The lectin Cs were also shown to precipitate monkey, sheep, rabbit, cat, hamster, rat and guinea-pig serum. Due to their uniform properties, lectin C may provide better alternative to the Artocarpus heterophyllus lectin, jacalin, for use in future investigations.
    Matched MeSH terms: Blood Proteins/metabolism
  2. Lau BYC, Othman A, Ramli US
    Protein J, 2018 12;37(6):473-499.
    PMID: 30367348 DOI: 10.1007/s10930-018-9802-x
    Proteomics technologies were first applied in the oil palm research back in 2008. Since proteins are the gene products that are directly correspond to phenotypic traits, proteomic tools hold a strong advantage above other molecular tools to comprehend the biological and molecular mechanisms in the oil palm system. These emerging technologies have been used as non-overlapping tools to link genome-wide transcriptomics and metabolomics-based studies to enhance the oil palm yield and quality through sustainable plant breeding. Many efforts have also been made using the proteomics technologies to address the oil palm's Ganoderma disease; the cause and management. At present, the high-throughput screening technologies are being applied to identify potential biomarkers involved in metabolism and cellular development through determination of protein expression changes that correlate with oil production and disease. This review highlights key elements in proteomics pipeline, challenges and some examples of their implementations in plant studies in the context of oil palm in particular. We foresee that the proteomics technologies will play more significant role to address diverse issues related to the oil palm in the effort to improve the oil crop.
    Matched MeSH terms: Plant Proteins/metabolism*
  3. Hussain H, Mustafa Kamal M, Al-Obaidi JR, Hamdin NE, Ngaini Z, Mohd-Yusuf Y
    Protein J, 2020 02;39(1):62-72.
    PMID: 31863255 DOI: 10.1007/s10930-019-09878-9
    Metroxylon sagu Rottb. or locally known as sago palm is a tropical starch crop grown for starch production in commercial plantations in Malaysia, especially in Sarawak, East Malaysia. This plant species accumulate the highest amount of edible starch compared to other starch-producing crops. However, the non-trunking phenomenon has been observed to be one of the major issues restricting the yield of sago palm starch. In this study, proteomics approach was utilised to discover differences between trunking and non-trunking proteomes in sago palm leaf tissues. Total protein from 16 years old trunking and non-trunking sago palm leaves from deep peat area were extracted with PEG fractionation extraction method and subjected to two-dimensional gel electrophoresis (2D PAGE). Differential protein spots were subjected to MALDI-ToF/ToF MS/MS. Proteomic analysis has identified 34 differentially expressed proteins between trunking and non-trunking sago samples. From these protein spots, all 19 proteins representing different enzymes and proteins have significantly increased in abundance in non-trunking sago plant when subjected to mass spectrometry. The identified proteins mostly function in metabolic pathways including photosynthesis, tricarboxylic acid cycle, glycolysis, carbon utilization and oxidative stress. The current study indicated that the several proteins identified through differentially expressed proteome contributed to physical differences in trunking and non-trunking sago palm.
    Matched MeSH terms: Plant Proteins/metabolism*
  4. Wan Zakaria WNA, Aizat WM, Goh HH, Mohd Noor N
    J Plant Res, 2019 Sep;132(5):681-694.
    PMID: 31422552 DOI: 10.1007/s10265-019-01130-w
    Carnivorous plants capture and digest insects for nutrients, allowing them to survive in soil deprived of nitrogenous nutrients. Plants from the genus Nepenthes produce unique pitchers containing secretory glands, which secrete enzymes into the digestive fluid. We performed RNA-seq analysis on the pitcher tissues and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis on the pitcher fluids of Nepenthes × ventrata to study protein expression in this carnivory organ during early days of pitcher opening. This transcriptome provides a sequence database for pitcher fluid protein identification. A total of 32 proteins of diverse functions were successfully identified in which 19 proteins can be quantified based on label-free quantitative proteomics (SWATH-MS) analysis while 16 proteins were not reported previously. Our findings show that certain proteins in the pitcher fluid were continuously secreted or replenished after pitcher opening, even without any prey or chitin induction. We also discovered a new aspartic proteinase, Nep6, secreted into pitcher fluid. This is the first SWATH-MS analysis of protein expression in Nepenthes pitcher fluid using a species-specific reference transcriptome. Taken together, our study using a gel-free shotgun proteomics informed by transcriptomics (PIT) approach showed the dynamics of endogenous protein secretion in the digestive organ of N. × ventrata and provides insights on protein regulation during early pitcher opening prior to prey capture.
    Matched MeSH terms: Plant Proteins/metabolism
  5. Chong FP, Ng KY, Koh RY, Chye SM
    Cell Mol Neurobiol, 2018 Jul;38(5):965-980.
    PMID: 29299792 DOI: 10.1007/s10571-017-0574-1
    Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.
    Matched MeSH terms: tau Proteins/metabolism*
  6. Hamad HA, Enezei HH, Alrawas A, Zakuan NM, Abdullah NA, Cheah YK, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858793 DOI: 10.3390/molecules25173876
    Hypoxia plays a significant role in solid tumors by the increased expression of hypoxia-inducible factor-1α (HIF-1α), which is known to promote cancer invasion and metastasis. Cancer-cell invasion dynamically begins with the degradation of the extracellular matrix (ECM) via invadopodia formation. The chemical substrates that are utilized by hypoxic cells as fuel to drive invadopodia formation are still not fully understood. Therefore, the aim of the study was to maintain MDA-MB-231 cells under hypoxia conditions to allow cells to form a large number of invadopodia as a model, followed by identifying their nutrient utilization. The results of the study revealed an increase in the number of cells forming invadopodia under hypoxia conditions. Moreover, Western blot analysis confirmed that essential proteins for hypoxia and invadopodia, including HIF-1α, vascular endothelial growth factor (VEGF), metallopeptidase-2 (MMP-2), and Rho guanine nucleotide exchange factor 7 (β-PIX), significantly increased under hypoxia. Interestingly, phenotype microarray showed that only 11 chemical substrates from 367 types of substrates were significantly metabolized in hypoxia compared to in normoxia. This is thought to be fuel for hypoxia to drive the invasion process. In conclusion, we found 11 chemical substrates that could have potential energy sources for hypoxia-induced invadopodia formation of these cells. This may in part be a target in the hypoxic tumor and invadopodia formation. Additionally, these findings can be used as potential carrier targets in cancer-drug discovery, such as the usage of dextrin.
    Matched MeSH terms: Neoplasm Proteins/metabolism*
  7. Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA
    J Agric Food Chem, 2020 Jul 15;68(28):7281-7297.
    PMID: 32551569 DOI: 10.1021/acs.jafc.0c01916
    Glucosinolates (GSLs) are plant secondary metabolites comprising sulfur and nitrogen mainly found in plants from the order of Brassicales, such as broccoli, cabbage, and Arabidopsis thaliana. The activated forms of GSL play important roles in fighting against pathogens and have health benefits to humans. The increasing amount of data on A. thaliana generated from various omics technologies can be investigated more deeply in search of new genes or compounds involved in GSL biosynthesis and metabolism. This review describes a comprehensive inventory of A. thaliana GSLs identified from published literature and databases such as KNApSAcK, KEGG, and AraCyc. A total of 113 GSL genes encoding for 23 transcription components, 85 enzymes, and five protein transporters were experimentally characterized in the past two decades. Continuous efforts are still on going to identify all molecules related to the production of GSLs. A manually curated database known as SuCCombase (http://plant-scc.org) was developed to serve as a comprehensive GSL inventory. Realizing lack of information on the regulation of GSL biosynthesis and degradation mechanisms, this review also includes relevant information and their connections with crosstalk among various factors, such as light, sulfur metabolism, and nitrogen metabolism, not only in A. thaliana but also in other crucifers.
    Matched MeSH terms: Arabidopsis Proteins/metabolism
  8. Afiqah-Aleng N, Altaf-Ul-Amin M, Kanaya S, Mohamed-Hussein ZA
    Reprod Biomed Online, 2020 Feb;40(2):319-330.
    PMID: 32001161 DOI: 10.1016/j.rbmo.2019.11.012
    RESEARCH QUESTION: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder with diverse clinical implications, such as infertility, metabolic disorders, cardiovascular diseases and psychological problems among others. The heterogeneity of conditions found in PCOS contribute to its various phenotypes, leading to difficulties in identifying proteins involved in this abnormality. Several studies, however, have shown the feasibility in identifying molecular evidence underlying other diseases using graph cluster analysis. Therefore, is it possible to identify proteins and pathways related to PCOS using the same approach?

    METHODS: Known PCOS-related proteins (PCOSrp) from PCOSBase and DisGeNET were integrated with protein-protein interactions (PPI) information from Human Integrated Protein-Protein Interaction reference to construct a PCOS PPI network. The network was clustered with DPClusO algorithm to generate clusters, which were evaluated using Fisher's exact test. Pathway enrichment analysis using gProfileR was conducted to identify significant pathways.

    RESULTS: The statistical significance of the identified clusters has successfully predicted 138 novel PCOSrp with 61.5% reliability and, based on Cronbach's alpha, this prediction is acceptable. Androgen signalling pathway and leptin signalling pathway were among the significant PCOS-related pathways corroborating the information obtained from the clinical observation, where androgen signalling pathway is responsible in producing male hormones in women with PCOS, whereas leptin signalling pathway is involved in insulin sensitivity.

    CONCLUSIONS: These results show that graph cluster analysis can provide additional insight into the pathobiology of PCOS, as the pathways identified as statistically significant correspond to earlier biological studies. Therefore, integrative analysis can reveal unknown mechanisms, which may enable the development of accurate diagnosis and effective treatment in PCOS.

    Matched MeSH terms: Proteins/metabolism*
  9. Hashim OH, Ahmad F, Shuib AS
    Immunol Invest, 2001 May;30(2):131-41.
    PMID: 11465670
    Champedak (Artocarpus integer) lectin-M is a lectin with high specificity and affinity for the core-mannosyl residues of the N-linked oligosaccharides of glycoproteins. We have studied the interaction of the champedak seed lectin with human serum glycoproteins that were resolved by 2-dimensional (2-D) gel electrophoresis. The lectin demonstrated strong interaction with haptoglobin beta chain, orosomucoid, alpha1-antitrypsin, alpha2-HS glycoprotein, transferrin, hemopexin, alpha1B-glycoprotein, and the heavy chains of IgA, IgM and IgG of the human serum. With exceptions of the heavy chains of the immunoglobulins and alpha1B-glycoprotein, all the other lectin-M-probed glycopeptides are acute-phase proteins. The use of champedak lectin-M to probe for serum glycoproteins that were separated in a 2-D gel electrophoresis and Western blotting technique may be conveniently applied to analyse the acute-phase and humoral immune responses simultaneously. Subjecting human serum to immobilised-lectin-M affinity chromatography was able to isolate intact haptoglobin, alpha1-antitrypsin, alpha1B-glycoprotein, hemopexin and IgA.
    Matched MeSH terms: Acute-Phase Proteins/metabolism*
  10. Wisitponchai T, Shoombuatong W, Lee VS, Kitidee K, Tayapiwatana C
    BMC Bioinformatics, 2017 Apr 19;18(1):220.
    PMID: 28424069 DOI: 10.1186/s12859-017-1628-6
    BACKGROUND: Computational analysis of protein-protein interaction provided the crucial information to increase the binding affinity without a change in basic conformation. Several docking programs were used to predict the near-native poses of the protein-protein complex in 10 top-rankings. The universal criteria for discriminating the near-native pose are not available since there are several classes of recognition protein. Currently, the explicit criteria for identifying the near-native pose of ankyrin-protein complexes (APKs) have not been reported yet.

    RESULTS: In this study, we established an ensemble computational model for discriminating the near-native docking pose of APKs named "AnkPlex". A dataset of APKs was generated from seven X-ray APKs, which consisted of 3 internal domains, using the reliable docking tool ZDOCK. The dataset was composed of 669 and 44,334 near-native and non-near-native poses, respectively, and it was used to generate eleven informative features. Subsequently, a re-scoring rank was generated by AnkPlex using a combination of a decision tree algorithm and logistic regression. AnkPlex achieved superior efficiency with ≥1 near-native complexes in the 10 top-rankings for nine X-ray complexes compared to ZDOCK, which only obtained six X-ray complexes. In addition, feature analysis demonstrated that the van der Waals feature was the dominant near-native pose out of the potential ankyrin-protein docking poses.

    CONCLUSION: The AnkPlex model achieved a success at predicting near-native docking poses and led to the discovery of informative characteristics that could further improve our understanding of the ankyrin-protein complex. Our computational study could be useful for predicting the near-native poses of binding proteins and desired targets, especially for ankyrin-protein complexes. The AnkPlex web server is freely accessible at http://ankplex.ams.cmu.ac.th .

    Matched MeSH terms: Proteins/metabolism*
  11. Akbar R, Jusoh SA, Amaro RE, Helms V
    Chem Biol Drug Des, 2017 May;89(5):762-771.
    PMID: 27995760 DOI: 10.1111/cbdd.12900
    Finding pharmaceutically relevant target conformations from an arbitrary set of protein conformations remains a challenge in structure-based virtual screening (SBVS). The growth in the number of available conformations, either experimentally determined or computationally derived, obscures the situation further. While the inflated conformation space potentially contains viable druggable targets, the increase of conformational complexity, as a consequence, poses a selection problem. To address this challenge, we took advantage of machine learning methods, namely an over-sampling and a binary classification procedure, and present a novel method to select druggable receptor conformations. Specifically, we trained a binary classifier on a set of nuclear receptor conformations, wherein each conformation was labeled with an enrichment measure for a corresponding SBVS. The classifier enabled us to formulate suggestions and identify enriching SBVS targets for six of seven nuclear receptors. Further, the classifier can be extended to other proteins of interest simply by feeding new training data sets to the classifier. Our work, thus, provides a methodology to identify pharmaceutically interesting receptor conformations for nuclear receptors and other drug targets.
    Matched MeSH terms: Proteins/metabolism
  12. Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M, et al.
    J Proteomics, 2017 02 23;155:85-98.
    PMID: 28040509 DOI: 10.1016/j.jprot.2016.12.009
    Leishmania parasites multiply and develop in the gut of a sand fly vector in order to be transmitted to a vertebrate host. During this process they encounter and exploit various nutrients, including sugars, and amino and fatty acids. We have previously generated a mutant Leishmania line that is deficient in glucose transport and which displays some biologically important phenotypic changes such as reduced growth in axenic culture, reduced biosynthesis of hexose-containing virulence factors, increased sensitivity to oxidative stress, and dramatically reduced parasite burden in both insect vector and macrophage host cells. Here we report the generation and integration of proteomic and metabolomic approaches to identify molecular changes that may explain these phenotypes. Our data suggest changes in pathways of glycoconjugate production and redox homeostasis, which likely represent adaptations to the loss of sugar uptake capacity and explain the reduced virulence of this mutant in sand flies and mammals. Our data contribute to understanding the mechanisms of metabolic adaptation in Leishmania and illustrate the power of integrated proteomic and metabolomic approaches to relate biochemistry to phenotype.

    BIOLOGICAL SIGNIFICANCE: This paper reports the application of comparative proteomic and metabolomic approaches to reveal the molecular basis for important phenotypic changes Leishmania parasites that are deficient in glucose uptake. Leishmania cause a very significant disease burden across the world and there are few effective drugs available for control. This work shows that proteomics and metabolomics can produce complementary data that advance understanding of parasite metabolism and highlight potential new targets for chemotherapy.

    Matched MeSH terms: Protozoan Proteins/metabolism*
  13. Nurul Adilah Z, Mohd Redzwan S
    J Sci Food Agric, 2017 Jun;97(8):2277-2281.
    PMID: 28111762 DOI: 10.1002/jsfa.8234
    Aflatoxin is a toxin produced by Aspergillus species of fungi. The main route of aflatoxin exposure is through the diet. Indeed, long-term aflatoxin exposure is linked to the development of hepatocellular carcinoma (HCC). Aflatoxin causes aflatoxicosis, which can be affected by several factors and is prevalent in many developing Asian and African countries. This mini-review discusses the effects of carbohydrate, fat and protein on aflatoxicosis based on findings from animal and human studies. It was found that high carbohydrate intake enhanced aflatoxicosis occurrence, while low ingestion of carbohydrate with caloric restriction slowed the symptoms associated with aflatoxicosis. Additionally, diets with low protein content worsened the symptoms related to HCC due to aflatoxin exposure. Nevertheless, a study reported that a high-protein diet favored detoxification of aflatoxin in vivo. There were also conflicting results on the influence of dietary fat, as high ingestion of fat enhanced aflatoxicosis development as compared with a low-fat diet. Moreover, the type of fat also plays a significant role in influencing aflatoxin toxicity. In regard to food safety, understanding the influence of macronutrients toward the progression of aflatoxicosis can improve preventive measures against human and animal exposure to aflatoxin. © 2017 Society of Chemical Industry.
    Matched MeSH terms: Dietary Proteins/metabolism
  14. Sahebi M, Hanafi MM, Mohidin H, Rafii MY, Azizi P, Idris AS, et al.
    Biomed Res Int, 2018;2018:1494157.
    PMID: 29721500 DOI: 10.1155/2018/1494157
    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.
    Matched MeSH terms: Plant Proteins/metabolism*
  15. Saik AY, Lim YY, Stanslas J, Choo WS
    Biotechnol Lett, 2017 Feb;39(2):297-304.
    PMID: 27812823 DOI: 10.1007/s10529-016-2246-5
    OBJECTIVES: To investigate the lipase-catalyzed acylation of quercetin with oleic acid using Candida antarctica lipase B.

    RESULTS: Three acylated analogues were produced: quercetin 4'-oleate (C33H42O8), quercetin 3',4'-dioleate (C51H74O9) and quercetin 7,3',4'-trioleate (C69H106O10). Their identities were confirmed with UPLC-ESI-MS and (1)H NMR analyses. The effects of temperature, duration and molar ratio of substrates on the bioconversion yields varied across conditions. The regioselectivity of the acylated quercetin analogues was affected by the molar ratio of substrates. TLC showed the acylated analogues had higher lipophilicity (152% increase) compared to quercetin. Partition coefficient (log P) of quercetin 4'-oleate was higher than those of quercetin and oleic acid. Quercetin 4'-oleate was also stable over 28 days of storage.

    CONCLUSIONS: Quercetin oleate esters with enhanced lipophilicity can be produced via lipase-catalyzed reaction using C. antarctica lipase B to be used in topical applications.

    Matched MeSH terms: Fungal Proteins/metabolism*
  16. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: Membrane Proteins/metabolism; Protozoan Proteins/metabolism; HSP70 Heat-Shock Proteins/metabolism; rho GTP-Binding Proteins/metabolism
  17. Jamil NAM, Rahmad N, Rosli NHM, Al-Obaidi JR
    Electrophoresis, 2018 12;39(23):2954-2964.
    PMID: 30074628 DOI: 10.1002/elps.201800185
    Wax apple is one of the underutilized fruits that is considered a good source of fibers, vitamins, minerals as well as antioxidants. In this study, a comparative analysis of the developments of wax fruit ripening at the proteomic and metabolomic level was reported. 2D electrophoresis coupled with MALDI-TOF/TOF was used to compare the proteome profile from three developmental stages named immature, young, and mature fruits. In general, the protein expression profile and the identified proteins function were discussed for their potential roles in fruit physiological development and ripening processes. The metabolomic investigation was also performed on the same samples using quadrupole LC-MS (LC-QTOF/MS). Roles of some of the differentially expressed proteins and metabolites are discussed in relation to wax apple ripening during the development. This is the first study investigating the changes in the proteins and metabolites in wax apple at different developmental stages. The information obtained from this research will be helpful in developing biomarkers for breeders and help the plant researchers to avoid wax apple cultivation problems such as fruit cracking.
    Matched MeSH terms: Plant Proteins/metabolism
  18. Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I
    Planta, 2020 Feb 18;251(3):68.
    PMID: 32072251 DOI: 10.1007/s00425-020-03356-8
    The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
    Matched MeSH terms: F-Box Proteins/metabolism*
  19. Jabeen S, Yap HY, Abdullah FFJ, Zakaria Z, Isa NM, Tan YC, et al.
    Genes (Basel), 2019 01 25;10(2).
    PMID: 30691021 DOI: 10.3390/genes10020081
    Although more than 100 genome sequences of Pasteurella multocida are available, comprehensive and complete genome sequence analysis is limited. This study describes the analysis of complete genome sequence and pathogenomics of P. multocida strain PMTB2.1. The genome of PMTB2.1 has 2176 genes with more than 40 coding sequences associated with iron regulation and 140 virulence genes including the complete tad locus. The tad locus includes several previously uncharacterized genes such as flp2, rcpC and tadV genes. A transposable phage resembling to Mu phages was identified in P. multocida that has not been identified in any other serotype yet. The multi-locus sequence typing analysis assigned the PMTB2.1 genome sequence as type ST101, while the comparative genome analysis showed that PMTB2.1 is closely related to other P. multocida strains with the genomic distance of less than 0.13. The expression profiling of iron regulating-genes of PMTB2.1 was characterized under iron-limited environment. Results showed significant changes in the expression profiles of iron-regulating genes (p < 0.05) whereas the highest expression of fecE gene (281 fold) at 30 min suggests utilization of the outer-membrane proteins system in iron acquisition at an early stage of growth. This study showed the phylogenomic relatedness of P. multocida and improved annotation of important genes and functional characterization of iron-regulating genes of importance to the bacterial growth.
    Matched MeSH terms: Bacterial Proteins/metabolism
  20. Hussain RMF, Kim HK, Khurshid M, Akhtar MT, Linthorst HJM
    Metabolomics, 2018 01 31;14(3):25.
    PMID: 30830336 DOI: 10.1007/s11306-018-1317-0
    INTRODUCTION: WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions.

    OBJECTIVE: We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.

    METHODS: The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.

    RESULTS: The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.

    CONCLUSION: Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.

    Matched MeSH terms: Arabidopsis Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links