METHODS: All adult patients with clinical suspicion of AMI admitted or transferred to 32 participating hospitals from 06.06.2022 to 05.04.2023 were included. Participants who were subsequently shown not to have AMI or had localized intestinal gangrene due to strangulating bowel obstruction had only baseline and outcome data collected.
RESULTS: AMI occurred in 0.038% of adult admissions in participating acute care hospitals worldwide. From a total of 705 included patients, 418 patients had confirmed AMI. In 69% AMI was the primary reason for admission, while in 31% AMI occurred after having been admitted with another diagnosis. Median time from onset of symptoms to hospital admission in patients admitted due to AMI was 24 h (interquartile range 9-48h) and time from admission to diagnosis was 6h (1-12 h). Occlusive arterial AMI was diagnosed in 231 (55.3%), venous in 73 (17.5%), non-occlusive (NOMI) in 55 (13.2%), other type in 11 (2.6%) and the subtype could not be classified in 48 (11.5%) patients. Surgery was the initial management in 242 (58%) patients, of which 59 (24.4%) underwent revascularization. Endovascular revascularization alone was carried out in 54 (13%), conservative treatment in 76 (18%) and palliative care in 46 (11%) patients. From patients with occlusive arterial AMI, revascularization was undertaken in 104 (45%), with 40 (38%) of them in one site admitting selected patients. Overall in-hospital and 90-day mortality of AMI was 49% and 53.3%, respectively, and among subtypes was lowest for venous AMI (13.7% and 16.4%) and highest for NOMI (72.7% and 74.5%). There was a high variability between participating sites for most variables studied.
CONCLUSIONS: The overall incidence of AMI and AMI subtypes varies worldwide, and case ascertainment is challenging. Pre-hospital delay in presentation was greater than delays after arriving at hospital. Surgery without revascularization was the most common management approach. Nearly half of the patients with AMI died during their index hospitalization. Together, these findings suggest a need for greater awareness of AMI, and better guidance in diagnosis and management.
TRIAL REGISTRATION: NCT05218863 (registered 19.01.2022).
METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, if they included a treatment group with daily primaquine given over multiple days where primaquine was commenced within 3 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine), and if they recorded haemoglobin or haematocrit concentrations on day 0. We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. The main outcome was haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL by day 14. Haemoglobin concentration changes between day 0 and days 2-3 and between day 0 and days 5-7 were assessed by mixed-effects linear regression for patients with glucose-6-phosphate dehydrogenase (G6PD) activity of (1) 30% or higher and (2) between 30% and less than 70%. The study was registered with PROSPERO, CRD42019154470 and CRD42022303680.
FINDINGS: Of 226 identified studies, 18 studies with patient-level data from 5462 patients from 15 countries were included in the analysis. A haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL occurred in one (0·1%) of 1208 patients treated without primaquine, none of 893 patients treated with a low daily dose of primaquine (<0·375 mg/kg per day), five (0·3%) of 1464 patients treated with an intermediate daily dose (0·375 mg/kg per day to <0·75 mg/kg per day), and six (0·5%) of 1269 patients treated with a high daily dose (≥0·75 mg/kg per day). The covariate-adjusted mean estimated haemoglobin changes at days 2-3 were -0·6 g/dL (95% CI -0·7 to -0·5), -0·7 g/dL (-0·8 to -0·5), -0·6 g/dL (-0·7 to -0·4), and -0·5 g/dL (-0·7 to -0·4), respectively. In 51 patients with G6PD activity between 30% and less than 70%, the adjusted mean haemoglobin concentration on days 2-3 decreased as G6PD activity decreased; two patients in this group who were treated with a high daily dose of primaquine had a reduction of more than 25% to a concentration of less than 7 g/dL. 17 of 18 included studies had a low or unclear risk of bias.
INTERPRETATION: Treatment of patients with G6PD activity of 30% or higher with 0·25-0·5 mg/kg per day primaquine regimens and patients with G6PD activity of 70% or higher with 0·25-1 mg/kg per day regimens were associated with similar risks of haemolysis to those in patients treated without primaquine, supporting the safe use of primaquine radical cure at these doses.
FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.
METHODS: Longitudinal data from two different sources were analysed: a pre-post study of an online parenting programme conducted across six countries - the ePLH Evaluation Study, and a prospective cohort study in the United States - LONGSCAN. Cross-lagged panel model on parenting stress and child maltreatment was used in each dataset.
RESULTS: Based on repeatedly measured data of 484 caregivers in the ePLH study across five time points (every two weeks), we found that parenting stress at an earlier time point predicted later child maltreatment (IRR = 1.14, 95 % CI: 1.10,1.18). In addition, the occurrence of child maltreatment was associated with higher subsequent short-term parenting stress (IRR = 1.04, 95 % CI: 1.01,1.08) and thus could form a vicious circle. In the LONGSCAN analysis with 772 caregivers who were followed up from child age of 6 to child age of 16, we also found parenting stress at an earlier time point predicted later child maltreatment (β = 0.11, 95 % CI: 0.01,0.20), but did not observe an association between child maltreatment and subsequent long-term parenting stress.
LIMITATIONS: Potential information bias on the measurements.
CONCLUSIONS: This study provides evidence for a bidirectional temporal relationship between parenting stress and child maltreatment, which should be considered in parenting intervention programmes.
METHODS: A prospective, observational single-centre study was conducted where 116 consecutive patients in a specialised heart failure clinic underwent level 1, attended polysomnography (PSG).
RESULTS: The prevalence of SDB was 78% using the apnoea-hypopnea index (AHI), AHI ⩾ 5/h threshold, and 59% with the AHI ⩾ 15/h threshold. Obstructive sleep apnoea (OSA) was the predominant type of SDB and was associated with increased body mass index and neck circumference. STOP-BANG was predictive of SDB, especially in men. Central sleep apnoea (CSA) patients had worse sleep indexes and lower awake arterial carbon dioxide. SDB was also homogenously present in preserved ejection fraction (EF) CHF.
CONCLUSION: Most of the CHF patients were found to have SDB with the utility of PSG. Local CHF guidelines should include sleep testing for all patients with CHF.The study is registered on ClinicalTrials.gov (NCT05332223) as 'The Epidemiological Characteristics of SDB in Patients with Reduced or Preserved EF CHF'.
METHODS: We used prospective data from the first 1,500 patients included in IGOS, aged ≥6 years and unable to walk independently. We evaluated whether the mEGOS at entry and week 1 could predict the inability to walk unaided at 4 and 26 weeks in the full cohort and in regional subgroups, using 2 measures for model performance: (1) discrimination: area under the receiver operating characteristic curve (AUC) and (2) calibration: observed vs predicted probability of being unable to walk independently. To improve the model predictions, we recalibrated the model containing the overall mEGOS score, without changing the individual predictive factors. Finally, we assessed the predictive ability of the individual factors.
RESULTS: For validation of mEGOS at entry, 809 patients were eligible (Europe/North America [n = 677], Asia [n = 76], other [n = 56]), and 671 for validation of mEGOS at week 1 (Europe/North America [n = 563], Asia [n = 65], other [n = 43]). AUC values were >0.7 in all regional subgroups. In the Europe/North America subgroup, observed outcomes were worse than predicted; in Asia, observed outcomes were better than predicted. Recalibration improved model accuracy and enabled the development of a region-specific version for Europe/North America (mEGOS-Eu/NA). Similar to the original mEGOS, severe limb weakness and higher age were the predominant predictors of poor outcome in the IGOS cohort.
DISCUSSION: mEGOS is a validated tool to predict the inability to walk unaided at 4 and 26 weeks in patients with GBS, also in countries outside the Netherlands. We developed a region-specific version of mEGOS for patients from Europe/North America.
CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that the mEGOS accurately predicts the inability to walk unaided at 4 and 26 weeks in patients with GBS.
TRIAL REGISTRATION INFORMATION: NCT01582763.