Hydrothermally synthesized TiO2nanotubes (TNTs) were first used as a filler for chitosan scaffold for reinforcement purpose. Chitosan-TNTs (CTNTs) scaffolds prepared via direct blending and freeze drying retained cylindrical structure and showed enhanced compressive modulus and reduced degradation rate compared to chitosan membrane which experienced severe shrinkage after rehydration with ethanol. Macroporous interconnectivity with pore size of 70-230μm and porosity of 88% were found in CTNTs scaffolds. Subsequently, the functionalization of CTNTs scaffolds with CaCl2solutions (0.5mM-40.5mM) was conducted at physiological pH. The adsorption isotherm of Ca2+ions onto CTNTs scaffolds fitted well with Freundlich isotherm. CTNTs scaffolds with Ca2+ions showed high biocompatibility by promoting adhesion, proliferation and early differentiation of MG63 in a non-dose dependent manner. CTNTs scaffolds with Ca2+ions can be an alternative for bone regeneration.
The effect of solid solution treatment on semisolid microstructure of Zn-22Al with developed dendrites was investigated. Zn-22Al is a zinc-based alloy with aluminium as its main alloying element. Producing Zn-22Al product by semisolid metal processing (SSM) offers significant advantages, such as reduction of macrosegregations, porosity and low forming efforts. Meanwhile, thermal and microstructure analyses of Zn-22Al alloy were studied using differential scanning calorimeter (DSC) and Olympus optical microscope. Solidus and liquidus of the alloy can be determined by DSC analysis. In addition, changes to the microstructures in response to solid solution treatments were also analyzed. The major effort of all the semi-solid technologies is the generation of small and spherical morphologies. Prior to the generation of spherical morphologies, the fine grains should be first produced. The as-cast samples were isothermally held at 315°C, ranging from 0.5 to 5 hours before they were partially re-melted at semisolid temperature of 438°C to produce solid globular grains structure in liquid matrix. The results indicated that a non-dendritic semisolid microstructure could not be obtained if the traditionally cast Zn-22Al alloy with developed dendrites was directly subjected to partial remelting. After solid solution treatment at 315°C, the black interdendritic eutectics were dissolved and gradually transformed into ß structure when the treatment time was increased. The microstructure of the solid solution treated sample changed into a small globular structure with the best shape factor of 0.9 and this corresponded to 40±16µm when the sample was treated for 3 hours, followed by directly partial remelting into its semi solid zone.
Introducing CO2 flux as the carbonate source had an effect on the carbonate content of carbonate apatite (CAp) synthesized by solid state reaction. The reactants were CaCO3 and beta-tricalcium phosphate (β-TCP) and the heat treatment in air was performed at 1250ºC followed by instant cooling in CO2 flux for temperatures ranging from 800ºC room temperature (RT) . The influence of CO2 flux at various temperature drop differences in the cooling process (1250ºC RT, 1250ºC–500ºC, 1250ºC–600ºC, 1250ºC–700ºC, and 1250ºC–800ºC) was tested to optimize the carbonation degree and subsequent effects on the physical and mechanical properties of CAp. Thermally treated samples revealed an increasing degree of carbonation, achieving a maximum of 5.2 wt% at the highest (1250ºC RT) and a minimum of 2.7 wt% at the lowest (1250ºC–800ºC) temperature drop differences, respectively. This showed that the carbonate content was correlated with the increase in exposure to CO2 flux. However, consistent compressive strength, tensile strength, density and porosity were observed against increasing temperature drop differences which indicated that the degree of carbonation exerted no influence on the physical and mechanical properties of CAp. This method enabled the synthesis of solid state CAp simply by exposing calcium phosphate mixtures to CO2 flux. It also allowed the control of carbonate content for desired medical applications.
The volume of waste generated from surface coating industries is of global concern. The disposal of this waste in the form of effluent has put enormous pressure on land and also poses as a health hazard when it leaches into soil and underground water. The study aims to examine the utilization of vinyl acetate effluents from water based paint factories as an admixture in concrete. Concrete specimens containing 0%, 2.5%, 5% and 10% of vinyl acetate effluents by weight of cement were prepared. The specimens were tested for drying shrinkage for 28 days and porosity was tested using mercury intrusion porosimetry. Findings show that concrete containing various proportions of vinyl acetate effluents manifests higher shrinkage behaviour compared to the control item. An investigation of pore size distribution reveals that polymer effluents have particles size larger than 50 nm which are categorize as macroporous in accordance to IUPAC classification. It can be concluded that adding polymer vinyl acetate effluents affects concrete deformation due to the condition of its pore structures. The utilization of this material may provide beneficial effect in terms of the durability performance of concrete and minimize environmental pollution.
Aluminium foam tube is a metal that consists of porous medium with special characteristics such as good energy absorption, good heat transfer and high thermal conductivity. These make it suitable to be used in a wide range of applications such as in heat exchangers. The aim of this project is to identify and analyse mechanical behaviour and microstructure aluminium foam tube produced and fabricated with infiltration method with vacuum-gas. The density of aluminium foam tube was also determined and an average aluminium foam tube with porosity 50% - 80% with the average NaCl particle size 2mm, 3mm and 4mm was produced. Foams with porosity 60%-75% NaCl has higher energy absorption. These was based on foam structure, density and maximum compressive load test result.
In current practice, oil palm frond leaflets and stems are re-used for soil nutrient recycling, while the petioles are typically burned. Frond petioles have high commercialization value, attributed to high lignocellulose fiber content and abundant of juice containing free reducing sugars. Pressed petiole fiber is the subject of interest in this study for the production of lignocellulolytic enzyme. The initial characterization showed the combination of 0.125 mm frond particle size and 60% moisture content provided a surface area of 42.3 m2/g, porosity of 12.8%, and density of 1.2 g/cm3, which facilitated fungal solid-state fermentation. Among the several species of Aspergillus and Trichoderma tested, Aspergillus awamori MMS4 yielded the highest xylanase (109 IU/g) and cellulase (12 IU/g), while Trichoderma virens UKM1 yielded the highest lignin peroxidase (222 IU/g). Crude enzyme cocktail also contained various sugar residues, mainly glucose and xylose (0.1-0.4 g/L), from the hydrolysis of cellulose and hemicellulose. FT-IR analysis of the fermented petioles observed reduction in cellulose crystallinity (I900/1098), cellulose-lignin (I900/1511), and lignin-hemicellulose (I1511/1738) linkages. The study demonstrated successful bioconversion of chemically untreated frond petioles into lignin peroxidase and xylanase-rich enzyme cocktail under SSF condition.
Neat cellulose acetate (CA) and CA/polysulfone (PSf) blend ultrafiltration membranes in the presence of polyvinylpyrrolidone as a pore former were prepared via a phase inversion technique. The prepared membranes were characterized by Fourier transform infrared, scanning electron microscopy, mechanical strength, water content, porosity, permeate flux and heavy metals (Pb2+, Cd2+, Zn2+ and Ni2+) rejection to comprehend the impact of polymer blend composition and additive on the properties of the modified membranes. The water flux expanded by increasing of PSf content in the polymer composition. CA/PSf (60/40) had the highest flux among prepared membranes. Prepared blend membranes were able to remove heavy metals from water in the following order: Pb2+ > Cd2+ > Zn2+ > Ni2+. The CA/PSf (80/20) blend membrane had great performance among prepared membranes due to the high heavy metals removal and permeate flux.
Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m2.h and reverse salt transport of 1.6 ± 0.2 g/m2.h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.
Epoxy shape memory foam (ESM) was produced by an advanced aqueous method. Mixture of epoxy, sodium bicarbonate,
hardener and ammonium chloride was premixed and emulsified in distilled water by using high speed stirring (at 1200
rpm). The content of sodium bicarbonate used was 5, 10, 15 and 20 phr. Besides that, ammonium chloride was used
(based on stoichiometrical content) to also function as acidifying agent in initiating the decomposition process of sodium
bicarbonate at lower foaming temperature. The foam morphology was observed using SEM. It was found that higher
sodium bicarbonate produced more porosity, more cell size, thinner cell wall and more cell interconnection. Epoxy shape
memory foam with 10 phr of sodium bicarbonate exhibited good shape memory property and better compression set.
Shape memory behaviour was measured by the recovered time of the transformed sample to its original shape.
Electrospun nanofiber membrane (NFM) has a high potential to be applied as a filter for produced water treatment due to its highly porous structure and great permeability. However, it faces fouling issues and has low mechanical properties, which reduces the performance and lifespan of the membrane. NFM has a low integrity and the fine mat easily detaches from the sheet. In this study, nylon 6,6 was selected as the polymer since it offers great hydrophilicity. In order to increase mechanical strength and separation performance of NFM, solvent vapor treatment was implemented where the vapor induces the fusion of fibers. The fabricated nylon 6,6 NFMs were treated with different exposure times of formic acid vapor. Results show that solvent vapor treatment helps to induce the fusion of overlapping fibers. The optimum exposure time for solvent vapor is 5 h to offer full retention of dispersed oil (100% of oil rejection), has 62% higher in tensile strength (1950 MPa) compared to untreated nylon 6,6 NFM (738 MPa), and has the final permeability closest to the untreated nylon 6,6 NFM (733 L/m2.h.bar). It also took more time to get fouled (220 min) compared to untreated NFM (160 min).
An advanced electrodialysis fermentation system was set up to remove ammonium during hydrogen fermentation. When the voltage was increased from 0 to 6 V, the average ammonium removal rate was improved from 8.7 to 31.1 mg/L/h at an initial ammonium concentration of 3000 mg/L. A model based on the Nernst-Plank equation and porous media properties of ion exchange membranes was successfully implemented to predict the ammonium removal performance. When such a system was fed with synthetic wastewater at an ammonium concentration of 3000 mg/L for hydrogen fermentation, a significant increase in specific hydrogen yield was observed in the experiment group at 4 V. Specific hydrogen yield was 225.0 mL/g glucose, this value is 47.9% higher than the control. Moreover, ammonium concentration in experiment group was reduced to 701.6 mg/L at 72 h when voltage was set at 4 V, which is 63.7% lower than that in 0 V experiment group.
This study explains the modeling of synthesized membranes using the Donnan Steric Pore model (DSPM) based on the Extended Nernst Planck Equation (ENP). Conventionally, structural parameters required to predict the performance of the membranes were determined through tedious experimentation, which in this study are found using a new MATLAB technique. A MATLAB program is used to determine the unknown structural parameters such as effective charge density (Xd), effective pore radius (rp), and effective membrane thickness to porosity ratio (Δx/Ak) by using the single solute rejection and permeation data. It was found that the model predicted the rejection of studied membranes accurately, with the E5C1 membrane exceeding the others (E5, E5C5) for rejection of single and divalent salt's aqueous solutions. The rejection of 100 ppm aqueous solution of NaCl for E5C1 was around 60%, whereas, for an aqueous solution of 100 ppm, CaCl2 rejection reached up to 80% at 10 bar feed pressure. The trend of salt rejection for all three membranes was found to be in the following order: E5C1 > E5C5 > E5, confirming that their structural parameters-controlled ion transport in these membranes. The structural parameters, such as effective pore radius, effective membrane thickness to porosity ratio, and effective charge density for the best performing membrane, i.e., E5C1, were determined to be 0.5 nm, 16 μm, and -6.04 mol/m3,respectively. Finally, it can be asserted that this method can be used to predict the real performance of membranes by significantly reducing the number of experiments previously required for the predictive modeling of nanofiltration-type membranes.
Porous silicon (PSi) layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm² fixed current density for different etching times. The samples were coated with a 50-60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM). Photoacoustic spectroscopy (PAS) measurements were carried out to measure the thermal diffusivity (TD) of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.
Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO₆ octahedral layers and induces the disintegration of SiO₄ tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO₆ octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO₄. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.
Porous structured silicon or porous silicon (PS) powder was prepared by chemical etching of silicon powder in an etchant solution of HF: HNO₃: H₂O (1:3:5 v/v). An immersion time of 4 min was sufficient for depositing Cu metal from an aqueous solution of CuSO₄ in the presence of HF. Scanning electron microscopy (SEM) analysis revealed that the Cu particles aggregated upon an increase in metal content from 3.3 wt% to 9.8 wt%. H₂-temperature programmed reduction (H₂-TPR) profiles reveal that re-oxidation of the Cu particles occurs after deposition. Furthermore, the profiles denote the existence of various sizes of Cu metal on the PS. The Cu-PS powders show excellent catalytic reduction on the p-nitrophenol regardless of the Cu loadings.
Chitosan-based hemostats are promising candidates for immediate hemorrhage control. However, they have some disadvantages and require further improvement to achieve the desired hemostatic efficiency. Here, a series of 1% Ga2O3-containing mesoporous bioactive glass-chitosan composite scaffolds (Ga-MBG/CHT) were constructed by the lyophilization process and the effect of various concentrations of Ga-MBG (10, 30, and 50 wt %) on the hemostatic function of the CHT scaffold was assessed as compared to that of Celox Rapid gauze (CXR), a current commercially available chitosan-coated hemostatic gauze. The prepared scaffolds exhibited >79% porosity and showed increased water uptake compared to that in CXR. The results of coagulation studies showed that pure CHT and composite scaffolds exhibited increased hemostatic performance with respect to CXR. Furthermore, the composite scaffold with the highest Ga-MBG content (50 wt %) had increased capability to enhancing thrombus generation, blood clotting, and platelet adhesion and aggregation than that of the scaffold made of pure CHT. The antibacterial efficacy and biocompatibility of the prepared scaffolds were also assessed by a time-killing assay and an Alamar Blue assay, respectively. Our results show that the antibacterial effect of 50% Ga-MBG/CHT was more pronounced than that of CHT and CXR. The cell viability results also demonstrated that Ga-MBG/CHT composite scaffolds had good biocompatibility, which facilitates the spreading and proliferation of human dermal fibroblast cells even with 50 wt % Ga-MBG loading. These results suggest that Ga-MBG/CHT scaffolds could be a promising hemostatic candidate for improving hemostasis in critical situations.
A layered nanoreactor (zinc hydroxide gallate/nitrate nanohybrid) has been designed as a nano-vessel to confine the gallate/nitrate reaction inside zinc hydroxide layers for production of metal/nitrogen-doped carbon catalysts. Metals (Fe2+, Co2+ and Ni2+) doped and bare zinc hydroxide nitrates (ZHN) were synthesized as the α-phase hydroxide hosts. By an incomplete ion-exchange process, nitrate anions between the layers of the hosts were then partially replaced by the gallate anions to produce the layered nanoreactors. Under heat-treatment, the reaction between the remaining un-exchanged nitrate anions and the organic moiety inside the basal spacing of each nanohybrid plate resulted in obtaining highly porous 3D metal/nitrogen-doped carbon nanosheets. These catalysts were then used as extremely efficient electrocatalysts for catalyzing oxygen reduction reaction (ORR). This study is intended to show the way to get maximum electrocatalytic activity of the metal/N-doped carbon catalysts toward the ORR. This exceptionally high ORR performance originates from the increased available surface, the best pore size range and the uniform distribution of the active sites in the produced catalysts, all provided by the use of new idea of the layered nanoreactor.
A recent study by Ooi and Ooi (EH Ooi, ET Ooi, Mass transport in biological tissues: Comparisons between single- and dual-porosity models in the context of saline-infused radiofrequency ablation, Applied Mathematical Modelling, 2017, 41, 271-284) has shown that single-porosity (SP) models for describing fluid transport in biological tissues significantly underestimate the fluid penetration depth when compared to dual-porosity (DP) models. This has raised some concerns on whether the SP model, when coupled with models of radiofrequency ablation (RFA) to simulate saline-infused RFA, could lead to an underestimation of the coagulation size. This paper compares the coagulation volumes obtained following saline-infused RFA predicted based on the SP and DP models for fluid transport. Results showed that the SP model predicted coagulation zones that are consistently 0.5 to 0.9 times smaller than that of DP model. This may be explained by the low permeability value of the tissue interstitial space, which causes the majority of the saline to flow through the vasculature. The absence of fluid flow tracking in the vasculature in the SP model meant that any flow of saline into the vasculature is treated as losses and do not contribute to the saline penetration depth of the tissue. Comparisons with experimental results from the literature revealed that the DP models predicted coagulation zone sizes that are closer to the experimental values than the SP models. This supports the hypothesis that the SP model is a poor choice for simulating the outcome of saline-infused RFA.
Device applications of shape memory polymers demand diverse shape changing geometries, which are currently limited to non-omnidirectional movement. This restriction originates from traditional thermomechanical programming methods such as uniaxial, biaxial stretching, bending, or compression. A solvent-modulated programming method is reported to achieve an omnidirectional shape memory behavior. The method utilizes freeze drying of hydrogels of polyethylene glycol networks with a melting transition temperature around 50 °C in their dry state. Such a process creates temporarily fixed macroporosity, which collapses upon heating, leading to significant omnidirectional shrinkage. These shrunken materials can swell in water to form hydrogels again and the omnidirectional programming and recovery can be repeated. The fixity ratio (R f ) and recovery ratio (R r ) can be maintained at 90% and 98% respectively upon shape memory multicycling. The maximum linear recoverable strain, as limited by the maximum swelling, is ≈90%. Amongst various application potentials, one can envision the fabrication of multiphase composites by taking advantages of the omnidirectional shrinkage from a porous polymer to a denser structure.
Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.