Displaying publications 121 - 130 of 130 in total

Abstract:
Sort:
  1. Hagar MN, Yazid F, Luchman NA, Ariffin SHZ, Wahab RMA
    BMC Oral Health, 2021 May 15;21(1):263.
    PMID: 33992115 DOI: 10.1186/s12903-021-01621-0
    BACKGROUND: Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group.

    METHODOLOGY: The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture).

    RESULTS: The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p 

    Matched MeSH terms: Durapatite
  2. Kannan, T.P., Quah, B.B., Azlina, A., Samsudin, A.R.
    MyJurnal
    Dentistry has searched for an ideal material to place in osseous defects for many years. Endogenous bone replacement has been the golden standard but involves additional surgery and may be available in limited quantities. Also, the exogenous bone replacement poses a risk of viral or bacterial transmission and the human body may even reject them. Therefore, before new biomaterials are approved for medical use, mutagenesis systems to exclude cytotoxic, mutagenic or carcinogenic properties are applied worldwide. The present preliminary study was carried out in five male New Zealand white rabbits (Oryctolagus cuniculus). Porous form of synthetic hydroxyapatite granules (500 mg), manufactured by School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, was implanted in the femur of the rabbits. Blood samples were collected prior to implantation and one week after implantation. The blood was cultured in vitro and the cell division was arrested at metaphase using colcemid. This was followed by the hypotonic treatment and fixation. Then, the chromosomes were prepared and stained for analysis. The modal chromosome number of rabbit (Oryctolagus cuniculus) was found to be 2n=44. The mean mitotic index values prior to and after implantation were 3.30 ± 0.66 and 3.24 ± 0.27 per cent respectively. No gross chromosome aberrations, both numerical and structural were noticed either prior to or after implantation of the biomaterial. These findings indicate that the test substance, synthetic hydroxyapatite granules does not produce gross chromosome aberrations under the present test conditions in rabbits.
    Matched MeSH terms: Durapatite
  3. Kannan, Thirumulu Ponnuraj, Nik Ahmad Shah Nik Lah, Azlina Ahmad, Siti Fatimah Ramli, Narazah Mohd Yusof, Ab Rani Samsudin
    MyJurnal
    Some of the beneficial bio compatible properties of hydroxyapatite [Ca10(PO4)6(OH)2]; the major componentand an essential ingredient of normal bone and teeth, are that it is rapidly integrated into the human body and will bondto bone forming in distinguishable unions. But, before new materials are approved for medical use, mutagenesis systems to exclude cytotoxic, mutagenic or carcinogenic properties are applied worldwide. This study aimed to detectany chromosomal aberrations induced by the synthetic hydroxyapatite granules [Manufactured by Universiti Sains
    Malaysia, (USM) Penang, Malaysia] in the bone marrow cells of mice. The mitotic indices of the groups treated with synthetic hydroxya patite granules did not show any significant difference as compared to the negative control group treated with distilled water. Also the groups of mice treated with synthetic hydroxyapatite granules and distilled waterdid not induce significant change in chromosome aberrations as compared to the positive control group treated with Mitomycin C. The mitotic indices and chromosomal analyses indicate that under the present test conditions, synthetichydroxya patite granules (manufactured by USM) are non cytotoxic and do not induce chromosome aberrations in the bone marrow cells of mice.
    Matched MeSH terms: Durapatite
  4. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim MF
    Biomed Pharmacother, 2008 Jun;62(5):328-32.
    PMID: 17988826
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of cyclic AMP (cAMP) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of adenylyl cyclase inhibitor (SQ22536), NO scavenger (carboxy PTIO) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NIO), was assessed by adding these to the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody prior to culturing on HA surfaces with or without the presence of SNAP. The levels of cAMP and cGMP were determined from the 3-day culture supernatants. The results showed that the production of cAMP but not cGMP by HA-stimulated HOS cells was augmented by SNAP. SQ22536 and carboxy PTIO suppressed but L-NIO only partially inhibited the production of cAMP by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody suppressed the production of cAMP by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of cAMP, perhaps, by augmenting adenylyl cyclase activity initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: Durapatite/pharmacology*
  5. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim F
    J Oral Implantol, 2008;34(4):196-202.
    PMID: 18780564 DOI: 10.1563/0.910.1
    The aim of the present study was to test the hypothesis that the proliferation of a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite (HA) may be regulated by nitric oxide (NO). The cells were cultured on the surface of HA. Medium or cells alone were used as controls. L-arginine, D-arginine, 7-NI (an nNOS inhibitor), L-NIL (an iNOS inhibitor), L-NIO (an eNOS inhibitor) or carboxy PTIO, a NO scavenger, was added in the HA-exposed cell cultures. The cells were also precoated with anti-human integrin alphaV antibody. The levels of nitrite were determined spectrophotometrically. Cell proliferation was assessed by colorimetric assay. The results showed increased nitrite production and cell proliferation by HA-stimulated HOS cells up to day 3 of cultures. Anti-integrin alphaV antibody, L-NIO, or carboxy PTIO suppressed, but L-arginine enhanced, nitrite production and cell proliferation of HA-stimulated HOS cells. The results of the present study suggest, therefore, that interaction between HA and HOS cell surface integrin alphaV molecule may activate eNOS to catalyze NO production which, in turn, may regulate the cell proliferation in an autocrine fashion.
    Matched MeSH terms: Durapatite/pharmacology*
  6. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Durapatite
  7. Daood U, Fawzy AS
    Arch Oral Biol, 2019 Feb;98:195-203.
    PMID: 30502562 DOI: 10.1016/j.archoralbio.2018.10.019
    OBJECTIVE: To investigate effects of HIFU on macrophage phenotype, surface micro-topography and nano-scale surface mechanical properties of dental cementum.

    MATERIALS AND METHODS: Root discs (2 mm thickness) were cut apical to CEJ and sectioned into quadrants. HIFU setup with bowl-shaped piezo ceramic transducer submerged in a water tank was used for exposure on each specimen for 15 s, 30 s or 60 s. The specimens of the control group were left without any HIFU exposure. HIFU was generated with a continuous sinusoidal wave of 120Vpp amplitude, 250 KHZ resonance-frequency and highest ultrasonic pressure of ∼10 bar at the focus. Specimens for SEM were viewed, and micro-topography characterization performed, using AFM and Ra parameter and surface area (SA) calculated by specialized SPM surface analysis software. For nano-indentation testing, experiments were carried out using AFM. Macrophage cell isolation and culturing was performed on cementum to receive the HIFU treatment at different time periods. Raman spectroscopy were scanned to create spectra perpendicular to the cementum substrate to analyze generation of standard spectra for Raman intensity ratio of hydroxyapatite normalized to the peaks ν1 960 cm-1. Data was expressed as means ± standard deviations and analyzed by one-way ANOVA in term of Ra, SA, H and Er. Different points for fluorescence intensity ratio were analyzed by Raman using Wilcoxon rank sum test.

    RESULTS: HIFU exposure at 60 s removed the smear layer and most of cementum appeared smoothened. AFM characterisation, showed a slight decrease in the irregularity of the surface as exposure time increased. Intact macrophages can be identified in control and all experimental HIFU groups. The level of fluorescence for the control and HIFU 15 and 30 s were low as compared to HIFU 60 s.

    CONCLUSION: If HIFU can be successfully implemented, it may be a possible alternative to current methods used in periodontal therapy to achieve smooth root surfaces.

    Matched MeSH terms: Durapatite
  8. Ng WM, Kwan MK, Merican AM
    Singapore Med J, 2006 Jan;47(1):71-4.
    PMID: 16397726
    Melioidosis is caused by an infection by Burkholderia pseudomallei. Osteomyelitis is a recognised manifestation of melioidosis but Burkholderia pseudomallei is a relatively rare aetiological agent in musculoskeletal infections. We report a 32-year-old diabetic man with septicaemia due to melioidotic infection of the spleen, liver and distal femur. The osteomyelitis relapsed despite being treated with the standard radical debridement and insertion of gentamycinimpregnated polymethylmetacrylate (PMMA) beads, followed by an optimal antibiotic therapy. The PMMA-gentamycin beads were then removed. The bone defect was debrided and packed with calcium hydroxyapatite blocks filled with ceftazidime powder. The osteomyelitis was successfully treated and the patient remained free of infection four years postoperatively. Computed tomography demonstrated successful incorporation of the calcium hydroxyapatite into host bone.
    Matched MeSH terms: Durapatite
  9. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
    Matched MeSH terms: Durapatite/pharmacology*; Durapatite/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links