METHODS: The test device was assembled with purified 31-kDa glycoprotein as diagnostic antigen and with gold-labelled anti-human immunoglublin-G as the detector reagent. A total of 97 serum samples were tested - 19 samples from clinically diagnosed patients with detectable A. cantonensis-specific antibody in immunoblotting; 43 samples from patients with other parasitic diseases, i.e. gnathostomiasis (n=13), toxocariasis (n=2), trichinellosis (n=2), hookworm infection (n=4), filariasis (n=5), cysticercosis (n=9), paragonimiasis (n=2), opisthorchiasis (n=3), and malaria (n=3); and 35 samples from normal healthy subjects.
RESULTS: The sensitivity, specificity, positive predictive value and negative predictive value of AcQuickDx Test to detect anti-A. cantonensis specific antibodies in serologically confirmed angiostrongyliasis cases, were 100%, 98.72%, 95% and 100%, respectively. Positive AcQuickDx was observed in 1 of 4 cases with hookworm infections. No positive AcQuickDx was observed in cases with other parasitic diseases, and the individual healthy subjects.
CONCLUSIONS: AcQuickDx Test is rapid, highly sensitive and specific, and easy to perform without additional equipment or ancillary supplies. It yields results that are interpreted visually, and possesses a long shelf-life at room temperature. Thus, it can be applied as an additional test for clinical diagnostic support of angiostrongyliasis either in conventional laboratories or for remote areas where laboratory infrastructure is not available.
METHODS: We systematically searched PubMed, Cochrane Central Register of Controlled Trials, Google Scholar, and medRxiv (preprint repository) databases (up to 7 January 2021). Pooled effect sizes with 95% confidence interval (CI) were generated using random-effects and inverse variance heterogeneity models. The risk of bias of the included RCTs was appraised using version 2 of the Cochrane risk-of-bias tool for randomized trials.
RESULTS: Six RCTs were included: two trials with an overall low risk of bias and four trials had some concerns regarding the overall risk of bias. Our meta-analysis did not find significant mortality benefits with the use of tocilizumab among patients with COVID-19 relative to non-use of tocilizumab (pooled hazard ratio = 0.83; 95% CI 0.66-1.05, n = 2,057). Interestingly, the estimated effect of tocilizumab on the composite endpoint of requirement for mechanical ventilation and/or all-cause mortality indicated clinical benefits, with some evidence against our model hypothesis of no significant effect at the current sample size (pooled hazard ratio = 0.62; 95% CI 0.42-0.91, n = 749).
CONCLUSION: Despite no clear mortality benefits in hospitalized patients with COVID-19, tocilizumab appears to reduce the likelihood of progression to mechanical ventilation.
RECENT FINDINGS: The biologicals that have been currently approved for asthma are omalizumab targeting IgE and reslizumab and mepolizumab targeting interleukin (IL)-5. Many other monoclonal antibodies are currently in various phases of clinical development. The new biological therapies for allergic diseases will eventually be tailored to the endotypes of these diseases and the identification of novel biomarkers. Further development of novel biologicals for the treatment of allergic diseases and asthma will be possible upon improved understanding of mechanisms of allergic diseases. Accordingly, further refinement of endotypes of allergen-specific and non-specific type 2 immune response and related inflammatory mediators is needed for optimal treatment of allergic diseases.