METHODOLOGY: One thousand two hundred and sixteen prospectively enrolled patients with ACLF (males 98%, mean age 42.5 ± 9.4 years, mean CTP, MELD and AARC scores of 12 ± 1.4, 29.7 ± 7 and 9.8 ± 2 respectively) from the Asian Pacific Association for the Study of the Liver (APASL) ACLF Research Consortium (AARC) database were analysed retrospectively. Patients with or without metabolic risk factors were compared for severity (CTP, MELD, AARC scores) and day 30 and 90 mortality. Information on overweight/obesity, type 2 diabetes mellitus (T2DM), hypertension and dyslipidaemia were available in 1028 (85%), 1019 (84%), 1017 (84%) and 965 (79%) patients respectively.
RESULTS: Overall, 392 (32%) patients died at day 30 and 528 (43%) at day 90. Overweight/obesity, T2DM, hypertension and dyslipidaemia were present in 154 (15%), 142 (14%), 66 (7%) and 141 (15%) patients, respectively, with no risk factors in 809 (67%) patients. Patients with overweight/obesity had higher MELD scores (30.6 ± 7.1 vs 29.2 ± 6.9, P = .007) and those with dyslipidaemia had higher AARC scores (10.4 ± 1.2 vs 9.8 ± 2, P = .014). Overweight/obesity was associated with increased day 30 mortality (HR 1.54, 95% CI 1.06-2.24, P = .023). None of other metabolic risk factors, alone or in combination, had any impact on disease severity or mortality. On multivariate analysis, overweight or obesity was significantly associated with 30-day mortality (aHR 1.91, 95% CI 1.41-2.59, P
METHODS: Altogether 1021 patients were analyzed for the severity and organ failure at admission to determine transplant eligibility and 28 day survival with or without transplant.
RESULTS: The ACLF cohort [mean age 44 ± 12.2 years, males 81%) was of sick patients; 55% willing for LT at admission, though 63% of them were ineligible due to sepsis or organ failure. On day 4, recovery in sepsis and/or organ failure led to an improvement in transplant eligibility from 37% at baseline to 63.7%. Delay in LT up to 7 days led to a higher incidence of multiorgan failure (p
PATIENTS AND METHODS: Data of 2360 patients from APASL-ACLF Research Consortium (AARC) was analysed. Multivariate logistic regression model (PIRO score) was developed from a derivation cohort (n=1363) which was validated in another prospective multicentric cohort of acute on chronic liver failure patients (n=997).
RESULTS: Factors significant for P component were serum creatinine[(≥2 mg/dL)OR 4.52, 95% CI (3.67-5.30)], bilirubin [(<12 mg/dL,OR 1) vs (12-30 mg/dL,OR 1.45, 95% 1.1-2.63) vs (≥30 mg/dL,OR 2.6, 95% CI 1.3-5.2)], serum potassium [(<3 mmol/LOR-1) vs (3-4.9 mmol/L,OR 2.7, 95% CI 1.05-1.97) vs (≥5 mmol/L,OR 4.34, 95% CI 1.67-11.3)] and blood urea (OR 3.73, 95% CI 2.5-5.5); for I component nephrotoxic medications (OR-9.86, 95% CI 3.2-30.8); for R component,Systemic Inflammatory Response Syndrome,(OR-2.14, 95% CI 1.4-3.3); for O component, Circulatory failure (OR-3.5, 95% CI 2.2-5.5). The PIRO score predicted acute kidney injury with C-index of 0.95 and 0.96 in the derivation and validation cohort. The increasing PIRO score was also associated with mortality (P
METHODS: Prospectively collected data of ACLF patients from APASL-ACLF Research Consortium (AARC) was analyzed for 30-day outcomes. The models evaluated at days 0, 4, and 7 of presentation for 30-day mortality were: AARC (model and score), CLIF-C (ACLF score, and OF score), NACSELD-ACLF (model and binary), SOFA, APACHE-II, MELD, MELD-Lactate, and CTP. Evaluation parameters were discrimination (c-indices), calibration [accuracy, sensitivity, specificity, and positive/negative predictive values (PPV/NPV)], Akaike/Bayesian Information Criteria (AIC/BIC), Nagelkerke-R2, relative prediction errors, and odds ratios.
RESULTS: Thirty-day survival of the cohort (n = 2864) was 64.9% and was lowest for final-AARC-grade-III (32.8%) ACLF. Performance parameters of all models were best at day 7 than at day 4 or day 0 (p 12 had the lowest 30-day survival (5.7%).
CONCLUSIONS: APASL-ACLF is often a progressive disease, and models assessed up to day 7 of presentation reliably predict 30-day mortality. Day-7 AARC model is a statistically robust tool for classifying risk of death and accurately predicting 30-day outcomes with relatively lower prediction errors. Day-7 AARC score > 12 may be used as a futility criterion in APASL-ACLF patients.
METHODS: We identified drugs as precipitants of ACLF among prospective cohort of patients with ACLF from the Asian Pacific Association of Study of Liver (APASL) ACLF Research Consortium (AARC) database. Drugs were considered precipitants after exclusion of known causes together with a temporal association between exposure and decompensation. Outcome was defined as death from decompensation.
RESULTS: Of the 3,132 patients with ACLF, drugs were implicated as a cause in 329 (10.5%, mean age 47 years, 65% men) and other nondrug causes in 2,803 (89.5%) (group B). Complementary and alternative medications (71.7%) were the commonest insult, followed by combination antituberculosis therapy drugs (27.3%). Alcoholic liver disease (28.6%), cryptogenic liver disease (25.5%), and non-alcoholic steatohepatitis (NASH) (16.7%) were common causes of underlying liver diseases. Patients with drug-induced ACLF had jaundice (100%), ascites (88%), encephalopathy (46.5%), high Model for End-Stage Liver Disease (MELD) (30.2), and Child-Turcotte-Pugh score (12.1). The overall 90-day mortality was higher in drug-induced (46.5%) than in non-drug-induced ACLF (38.8%) (P = 0.007). The Cox regression model identified arterial lactate (P < 0.001) and total bilirubin (P = 0.008) as predictors of mortality.
DISCUSSION: Drugs are important identifiable causes of ACLF in Asia-Pacific countries, predominantly from complementary and alternative medications, followed by antituberculosis drugs. Encephalopathy, bilirubin, blood urea, lactate, and international normalized ratio (INR) predict mortality in drug-induced ACLF.
METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months.
RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=-4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group.
CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events. (Funded by Bayer; COMPASS ClinicalTrials.gov number, NCT01776424 .).
METHODS: Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) is a double-blind superiority trial comparing rivaroxaban 2.5 mg twice daily combined with aspirin 100 mg once daily or rivaroxaban 5 mg twice daily vs aspirin 100 mg once daily for prevention of myocardial infarction, stroke, or cardiovascular death in patients with stable CAD or PAD. Patients not taking a proton pump inhibitor were also randomized, using a partial factorial design, to pantoprazole 40 mg once daily or placebo. The trial was designed to have at least 90% power to detect a 20% reduction in each of the rivaroxaban treatment arms compared with aspirin and to detect a 50% reduction in upper GI complications with pantoprazole compared with placebo.
RESULTS: Between February 2013 and May 2016, we recruited 27,395 participants from 602 centres in 33 countries; 17,598 participants were included in the pantoprazole vs placebo comparison. At baseline, the mean age was 68.2 years, 22.0% were female, 90.6% had CAD, and 27.3% had PAD.
CONCLUSIONS: COMPASS will provide information on the efficacy and safety of rivaroxaban, alone or in combination with aspirin, in the long-term management of patients with stable CAD or PAD, and on the efficacy and safety of pantoprazole in preventing upper GI complications in patients receiving antithrombotic therapy.
METHODS AND RESULTS: Of the 27 395 patients enrolled in COMPASS, 12 964 (mean age at baseline 67.2 years) from 455 sites in 32 countries were enrolled in LTOLE and treated with the combination of rivaroxaban and aspirin for a median of 374 additional days (range 1-1191 days). During LTOLE, the incident events per 100 patient years were as follows: for the primary outcome [cardiovascular death, stroke, or myocardial infarction (MI)] 2.35 [95% confidence interval (CI) 2.11-2.61], mortality 1.87 (1.65-2.10), stroke 0.62 (0.50-0.76), and MI 1.02 (0.86-1.19), with CIs that overlapped those seen during the randomized treatment phase with the combination of rivaroxaban and aspirin. The incidence rates for major and minor bleeding were 1.01 (0.86-1.19) and 2.49 (2.24-2.75), compared with 1.67 (1.48-1.87) and 5.11 (95% CI 4.77-5.47), respectively, during the randomized treatment phase with the combination.
CONCLUSION: In patients with chronic CAD and/or PAD, extended combination treatment for a median of 1 year and a maximum of 3 years was associated with incidence rates for efficacy and bleeding that were similar to or lower than those seen during the randomized treatment phase, without any new safety signals.
METHODS AND RESULTS: Using a Delphi-based approach, a multidisciplinary panel of 50 international experts from 26 countries reached a consensus on some of the open research questions regarding the link between MAFLD and CKD.
CONCLUSIONS: This Delphi-based consensus statement provided guidance on the epidemiology, mechanisms, management and treatment of MAFLD and CKD, as well as the relationship between the severity of MAFLD and risk of CKD, which establish a framework for the early prevention and management of these two common and interconnected diseases.
METHODS: Members of the Global NASH Council created two surveys about experiences/attitudes toward NAFLD and related diagnostic terms: a 68-item patient and a 41-item provider survey.
RESULTS: Surveys were completed by 1,976 patients with NAFLD across 23 countries (51% Middle East/North Africa [MENA], 19% Europe, 17% USA, 8% Southeast Asia, 5% South Asia) and 825 healthcare providers (67% gastroenterologists/hepatologists) across 25 countries (39% MENA, 28% Southeast Asia, 22% USA, 6% South Asia, 3% Europe). Of all patients, 48% ever disclosed having NAFLD/NASH to family/friends; the most commonly used term was "fatty liver" (88% at least sometimes); "metabolic disease" or "MAFLD" were rarely used (never by >84%). Regarding various perceptions of diagnostic terms by patients, there were no substantial differences between "NAFLD", "fatty liver disease (FLD)", "NASH", or "MAFLD". The most popular response was being neither comfortable nor uncomfortable with either term (56%-71%), with slightly greater discomfort with "FLD" among the US and South Asian patients (47-52% uncomfortable). Although 26% of patients reported stigma related to overweight/obesity, only 8% reported a history of stigmatization or discrimination due to NAFLD. Among providers, 38% believed that the term "fatty" was stigmatizing, while 34% believed that "nonalcoholic" was stigmatizing, more commonly in MENA (43%); 42% providers (gastroenterologists/hepatologists 45% vs. 37% other specialties, p = 0.03) believed that the name change to metabolic dysfunction-associated steatotic liver disease (or MASLD) might reduce stigma. Regarding the new nomenclature, the percentage of providers reporting "steatotic liver disease" as stigmatizing was low (14%).
CONCLUSIONS: The perception of NAFLD stigma varies among patients, providers, geographic locations and sub-specialties.
IMPACT AND IMPLICATIONS: Over the past decades, efforts have been made to change the nomenclature of nonalcoholic fatty liver disease (NAFLD) to better align with its underlying pathogenetic pathways and remove any potential stigma associated with the name. Given the paucity of data related to stigma in NAFLD, we undertook this global comprehensive survey to assess stigma in NAFLD among patients and providers from around the world. We found there is a disconnect between physicians and patients related to stigma and related nomenclature. With this knowledge, educational programs can be developed to better target stigma in NAFLD among all stakeholders and to provide a better opportunity for the new nomenclature to address the issues of stigma.
METHODS: Members of the Global NASH Council created a survey about disease burden in NAFLD. Participants completed a 35-item questionnaire to assess liver disease burden (LDB) (seven domains), the 36-item CLDQ-NASH (six domains) survey to assess HRQL and reported their experience with stigmatization and discrimination.
RESULTS: A total of 2,117 patients with NAFLD from 24 countries completed the LDB survey (48% Middle East and North Africa, 18% Europe, 16% USA, 18% Asia) and 778 competed CLDQ-NASH. Of the study group, 9% reported stigma due to NAFLD and 26% due to obesity. Participants who reported stigmatization due to NAFLD had substantially lower CLDQ-NASH scores (all p <0.0001). In multivariate analyses, experience with stigmatization or discrimination due to NAFLD was the strongest independent predictor of lower HRQL scores (beta from -5% to -8% of score range size, p <0.02). Experience with stigmatization due to obesity was associated with lower Activity, Emotional Health, Fatigue, and Worry domain scores, and being uncomfortable with the term "fatty liver disease" with lower Emotional Health scores (all p <0.05). In addition to stigma, the greatest disease burden as assessed by LDB was related to patients' self-blame for their liver disease.
CONCLUSIONS: Stigmatization of patients with NAFLD, whether it is caused by obesity or NAFLD, is strongly and independently associated with a substantial impairment of their HRQL. Self-blame is an important part of disease burden among patients with NAFLD.
IMPACT AND IMPLICATIONS: Patients with nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), may experience impaired health-related quality of life and stigmatization. Using a specifically designed survey, we found that stigmatization of patients with NAFLD, whether it is caused by obesity or the liver disease per se, is strongly and independently associated with a substantial impairment of their quality of life. Physicians treating patients with NAFLD should be aware of the profound implications of stigma, the high prevalence of self-blame in the context of this disease burden, and that providers' perception may not adequately reflect patients' perspective and experience with the disease.
Methods: This prospective multicenter observational study was performed in 116 worldwide surgical departments from 44 countries over a 6-month period (April 1, 2016-September 30, 2016). All consecutive patients admitted to surgical departments with a clinical diagnosis of AA were included in the study.
Results: A total of 4282 patients were enrolled in the POSAW study, 1928 (45%) women and 2354 (55%) men, with a median age of 29 years. Nine hundred and seven (21.2%) patients underwent an abdominal CT scan, 1856 (43.3%) patients an US, and 285 (6.7%) patients both CT scan and US. A total of 4097 (95.7%) patients underwent surgery; 1809 (42.2%) underwent open appendectomy and 2215 (51.7%) had laparoscopic appendectomy. One hundred eighty-five (4.3%) patients were managed conservatively. Major complications occurred in 199 patients (4.6%). The overall mortality rate was 0.28%.
Conclusions: The results of the present study confirm the clinical value of imaging techniques and prognostic scores. Appendectomy remains the most effective treatment of acute appendicitis. Mortality rate is low.
Methods: This worldwide multicentre observational study included 153 surgical departments across 56 countries over a 4-month study period between February 1, 2018, and May 31, 2018.
Results: A total of 3137 patients were included, with 1815 (57.9%) men and 1322 (42.1%) women, with a median age of 47 years (interquartile range [IQR] 28-66). The overall in-hospital mortality rate was 8.9%, with a median length of stay of 6 days (IQR 4-10). Using multivariable logistic regression, independent variables associated with in-hospital mortality were identified: age > 80 years, malignancy, severe cardiovascular disease, severe chronic kidney disease, respiratory rate ≥ 22 breaths/min, systolic blood pressure < 100 mmHg, AVPU responsiveness scale (voice and unresponsive), blood oxygen saturation level (SpO2) < 90% in air, platelet count < 50,000 cells/mm3, and lactate > 4 mmol/l. These variables were used to create the PIPAS Severity Score, a bedside early warning score for patients with acute peritonitis. The overall mortality was 2.9% for patients who had scores of 0-1, 22.7% for those who had scores of 2-3, 46.8% for those who had scores of 4-5, and 86.7% for those who have scores of 7-8.
Conclusions: The simple PIPAS Severity Score can be used on a global level and can help clinicians to identify patients at high risk for treatment failure and mortality.
MATERIALS AND METHODS: A 56-question online survey covering various aspects of the evaluation and management of NOA was sent to specialists around the globe. This paper analyzes the results of the second half of the survey dealing with the management of NOA. Results have been compared to current guidelines, and expert recommendations have been provided using a Delphi process.
RESULTS: Participants from 49 countries submitted 336 valid responses. Hormonal therapy for 3 to 6 months was suggested before surgical sperm retrieval (SSR) by 29.6% and 23.6% of participants for normogonadotropic hypogonadism and hypergonadotropic hypogonadism respectively. The SSR rate was reported as 50.0% by 26.0% to 50.0% of participants. Interestingly, 46.0% reported successful SSR in <10% of men with Klinefelter syndrome and 41.3% routinely recommended preimplantation genetic testing. Varicocele repair prior to SSR is recommended by 57.7%. Half of the respondents (57.4%) reported using ultrasound to identify the most vascularized areas in the testis for SSR. One-third proceed directly to microdissection testicular sperm extraction (mTESE) in every case of NOA while others use a staged approach. After a failed conventional TESE, 23.8% wait for 3 months, while 33.1% wait for 6 months before proceeding to mTESE. The cut-off of follicle-stimulating hormone for positive SSR was reported to be 12-19 IU/mL by 22.5% of participants and 20-40 IU/mL by 27.8%, while 31.8% reported no upper limit.
CONCLUSIONS: This is the largest survey to date on the real-world medical and surgical management of NOA by reproductive experts. It demonstrates a diverse practice pattern and highlights the need for evidence-based international consensus guidelines.
MATERIALS AND METHODS: A 56-item questionnaire survey on NOA diagnosis and management was conducted globally from July to September 2022. This paper focuses on part 1, evaluating NOA diagnosis. Data from 367 participants across 49 countries were analyzed descriptively, with a Delphi process used for expert recommendations.
RESULTS: Of 336 eligible responses, most participants were experienced attending physicians (70.93%). To diagnose azoospermia definitively, 81.7% requested two semen samples. Commonly ordered hormone tests included serum follicle-stimulating hormone (FSH) (97.0%), total testosterone (92.9%), and luteinizing hormone (86.9%). Genetic testing was requested by 66.6%, with karyotype analysis (86.2%) and Y chromosome microdeletions (88.3%) prevalent. Diagnostic testicular biopsy, distinguishing obstructive azoospermia (OA) from NOA, was not performed by 45.1%, while 34.6% did it selectively. Differentiation relied on physical examination (76.1%), serum hormone profiles (69.6%), and semen tests (68.1%). Expectations of finding sperm surgically were higher in men with normal FSH, larger testes, and a history of sperm in ejaculate.
CONCLUSIONS: This expert survey, encompassing 367 participants from 49 countries, unveils congruence with recommended guidelines in NOA diagnosis. However, noteworthy disparities in practices suggest a need for evidence-based, international consensus guidelines to standardize NOA evaluation, addressing existing gaps in professional recommendations.