Displaying publications 101 - 120 of 133 in total

Abstract:
Sort:
  1. Chin VK, Atika Aziz NA, Hudu SA, Harmal NS, Syahrilnizam A, Jalilian FA, et al.
    J Virol Methods, 2016 10;236:117-125.
    PMID: 27432115 DOI: 10.1016/j.jviromet.2016.07.012
    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection.
    Matched MeSH terms: Viral Proteins/antagonists & inhibitors*; Viral Proteins/genetics*
  2. Goh KM, Gan HM, Chan KG, Chan GF, Shahar S, Chong CS, et al.
    PLoS One, 2014;9(6):e90549.
    PMID: 24603481 DOI: 10.1371/journal.pone.0090549
    Species of Anoxybacillus are widespread in geothermal springs, manure, and milk-processing plants. The genus is composed of 22 species and two subspecies, but the relationship between its lifestyle and genome is little understood. In this study, two high-quality draft genomes were generated from Anoxybacillus spp. SK3-4 and DT3-1, isolated from Malaysian hot springs. De novo assembly and annotation were performed, followed by comparative genome analysis with the complete genome of Anoxybacillus flavithermus WK1 and two additional draft genomes, of A. flavithermus TNO-09.006 and A. kamchatkensis G10. The genomes of Anoxybacillus spp. are among the smaller of the family Bacillaceae. Despite having smaller genomes, their essential genes related to lifestyle adaptations at elevated temperature, extreme pH, and protection against ultraviolet are complete. Due to the presence of various competence proteins, Anoxybacillus spp. SK3-4 and DT3-1 are able to take up foreign DNA fragments, and some of these transferred genes are important for the survival of the cells. The analysis of intact putative prophage genomes shows that they are highly diversified. Based on the genome analysis using SEED, many of the annotated sequences are involved in carbohydrate metabolism. The presence of glycosyl hydrolases among the Anoxybacillus spp. was compared, and the potential applications of these unexplored enzymes are suggested here. This is the first study that compares Anoxybacillus genomes from the aspect of lifestyle adaptations, the capacity for horizontal gene transfer, and carbohydrate metabolism.
    Matched MeSH terms: Viral Proteins/genetics
  3. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
    Matched MeSH terms: Viral Proteins/immunology*
  4. Zhang YZ, Xiong CL, Lin XD, Zhou DJ, Jiang RJ, Xiao QY, et al.
    Infect Genet Evol, 2009 Jan;9(1):87-96.
    PMID: 19041424 DOI: 10.1016/j.meegid.2008.10.014
    There have been three major rabies epidemics in China since the 1950s. To gain more insights into the molecular epidemiology of rabies viruses (RVs) for the third (the current) epidemic, we isolated RV from dogs and humans in major endemic areas, and characterized these isolates genetically by sequencing the entire glycoprotein (G) gene and the G-L non-coding region. These sequences were also compared phylogenetically with RVs isolated in China during previous epidemics and those around the world. Comparison of the entire G genes among the Chinese isolates revealed up to 21.8% divergence at the nucleotide level and 17.8% at the amino acid level. The available Chinese isolates could be divided into two distinct clades, each of which could be further divided into six lineages. Viruses in clade I include most of the Chinese viruses as well as viruses from southeast Asian countries including Indonesia, Malaysia, the Philippines, Thailand, and Vietnam. The viruses in the other clade were found infrequently in China, but are closely related to viruses distributed worldwide among terrestrial animals. Interestingly, most of the viruses isolated during the past 10 years belong to lineage A viruses within clade I whereas most of the viruses isolated before 1996 belong to other lineages within clades I and II. Our results indicated that lineages A viruses have been predominant during the past 10 years and thus are largely responsible for the third and the current epidemic in China. Our results also suggested that the Chinese RV isolates in clade I share a common recent ancestor with those circulating in southeast Asia.
    Matched MeSH terms: Viral Proteins/genetics
  5. Walker PJ, Widen SG, Firth C, Blasdell KR, Wood TG, Travassos da Rosa AP, et al.
    Am J Trop Med Hyg, 2015 Nov;93(5):1041-51.
    PMID: 26324724 DOI: 10.4269/ajtmh.15-0344
    The genus Nairovirus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean-Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus.
    Matched MeSH terms: Viral Proteins/genetics
  6. Foong YT, Cheng HM, Sam CK, Dillner J, Hinderer W, Prasad U
    Int J Cancer, 1990 Jun 15;45(6):1061-4.
    PMID: 1693600
    The Epstein-Barr virus nuclear antigen I (EBNA I) is the only latent EBV antigen consistently expressed in malignant tissues of the nasopharynx. A 20-amino-acid synthetic peptide, p107 contains a major epitope of EBNA I. We tested sera from 210 patients with nasopharyngeal carcinoma (NPC) and from 128 normal individuals (NHS) for IgA antibodies to p107 using an enzyme-linked immunosorbent assay (ELISA). Whereas 191/210 (91%) of NPC patients had IgA antibodies to p107, only 17/128 (13.3%) of NHS had such antibodies and only 6/57 (10.5%) of sera from patients with malignancies other than NPC had IgA-p107 reactivity. Thirty-nine salivary samples from 46 NPC patients (84.8%) also contained IgA-p107 antibodies whereas only 3/42 (7.1%) of normal saliva samples were IgA-p107 positive. The results suggest that IgA antibodies to EBNA I may become a useful, easily measurable, marker for NPC.
    Matched MeSH terms: Viral Proteins/immunology
  7. Koitabashi T, Vuddhakul V, Radu S, Morigaki T, Asai N, Nakaguchi Y, et al.
    Microbiol. Immunol., 2006;50(2):135-48.
    PMID: 16490932
    Nine Escherichia coli O157: H7/- strains isolated primarily from non-clinical sources in Thailand and Japan carried the stx(2) gene but did not produce Stx2 toxin in a reversed passive latex agglutination (RPLA) assay. A strain (EDL933) bearing a stx(2) phage (933W) was compared to a strain (Thai-12) that was Stx2-negative but contained the stx(2) gene. To study the lack of Stx2 production, the Thai-12 stx(2) gene and its upstream nucleotide sequence were analyzed. The Thai-12 stx(2) coding region was intact and Stx2 was expressed from a cloned stx(2) gene using a plasmid vector and detected using RPLA. A lacZ fusion analysis found the Thai-12 stx(2) promoter non-functional. Because the stx(2) gene is downstream of the late promoter in the stx(2) phage genome, the antitermination activity of Q protein is essential for strong stx(2) transcription. Thai-12 had the q gene highly homologous to that of Phi21 phage but not to the 933W phage. High-level expression of exogenous q genes demonstrated Q antitermination activity was weak in Thai-12. Replication of stx(2) phage was not observed in Stx2-negative strains. The q-stx(2) gene sequence of Thai-12 was well conserved in all Stx2-negative strains. A PCR assay to detect the Thai-12 q-stx(2) sequence demonstrated that 30% of O157 strains from marketed Malaysian beef carried this sequence and they produced little or no Stx2. These results suggest that stx(2)-positive O157 strains that produce little or no Stx2 may be widely distributed in the Asian environment.
    Matched MeSH terms: Viral Proteins/genetics
  8. Li K, Yan S, Wang N, He W, Guan H, He C, et al.
    Transbound Emerg Dis, 2020 Jan;67(1):121-132.
    PMID: 31408582 DOI: 10.1111/tbed.13330
    Since its first emergence in 1998 in Malaysia, Nipah virus (NiV) has become a great threat to domestic animals and humans. Sporadic outbreaks associated with human-to-human transmission caused hundreds of human fatalities. Here, we collected all available NiV sequences and combined phylogenetics, molecular selection, structural biology and receptor analysis to study the emergence and adaptive evolution of NiV. NiV can be divided into two main lineages including the Bangladesh and Malaysia lineages. We formly confirmed a significant association with geography which is probably the result of long-term evolution of NiV in local bat population. The two NiV lineages differ in many amino acids; one change in the fusion protein might be involved in its activation via binding to the G protein. We also identified adaptive and positively selected sites in many viral proteins. In the receptor-binding G protein, we found that sites 384, 386 and especially 498 of G protein might modulate receptor-binding affinity and thus contribute to the host jump from bats to humans via the adaption to bind the human ephrin-B2 receptor. We also found that site 1645 in the connector domain of L was positive selected and involved in adaptive evolution; this site might add methyl groups to the cap structure present at the 5'-end of the RNA and thus modulate its activity. This study provides insight to assist the design of early detection methods for NiV to assess its epidemic potential in humans.
    Matched MeSH terms: Viral Proteins/genetics
  9. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Viral Proteins/genetics
  10. Schuh AJ, Guzman H, Tesh RB, Barrett AD
    Vector Borne Zoonotic Dis, 2013 Jul;13(7):479-88.
    PMID: 23590316 DOI: 10.1089/vbz.2011.0870
    Five genotypes (GI-V) of Japanese encephalitis virus (JEV) have been identified, all of which have distinct geographical distributions and epidemiologies. It is thought that JEV originated in the Indonesia-Malaysia region from an ancestral virus. From that ancestral virus GV diverged, followed by GIV, GIII, GII, and GI. Genotype IV appears to be confined to the Indonesia-Malaysia region, as GIV has been isolated in Indonesia from mosquitoes only, while GV has been isolated on three occasions only from a human in Malaysia and mosquitoes in China and South Korea. In contrast, GI-III viruses have been isolated throughout Asia and Australasia from a variety of hosts. Prior to this study only 13 JEV isolates collected from the Indonesian archipelago had been studied genetically. Therefore the sequences of the envelope (E) gene of 24 additional Indonesian JEV isolates, collected throughout the archipelago between 1974 and 1987, were determined and a series of molecular adaptation analyses were performed. Phylogenetic analysis indicated that over a 14-year time span three genotypes of JEV circulated throughout Indonesia, and a statistically significant association between the year of virus collection and genotype was revealed: isolates collected between 1974 and 1980 belonged to GII, isolates collected between 1980 and 1981 belonged to GIV, and isolates collected in 1987 belonged to GIII. Interestingly, three of the GII Indonesian isolates grouped with an isolate that was collected during the JE outbreak that occurred in Australia in 1995, two of the GIII Indonesian isolates were closely related to a Japanese isolate collected 40 years previously, and two Javanese GIV isolates possessed six amino acid substitutions within the E protein when compared to a previously sequenced GIV isolate collected in Flores. Several amino acids within the E protein of the Indonesian isolates were found to be under directional evolution and/or co-evolution. Conceivably, the tropical climate of the Indonesia/Malaysia region, together with its plethora of distinct fauna and flora, may have driven the emergence and evolution of JEV. This is consistent with the extensive genetic diversity seen among the JEV isolates observed in this study, and further substantiates the hypothesis that JEV originated in the Indonesia-Malaysia region.
    Matched MeSH terms: Viral Proteins/genetics
  11. Hu T, Zheng Y, Zhang Y, Li G, Qiu W, Yu J, et al.
    BMC Microbiol, 2012;12:305.
    PMID: 23268691 DOI: 10.1186/1471-2180-12-305
    The identification of new virus strains is important for the study of infectious disease, but current (or existing) molecular biology methods are limited since the target sequence must be known to design genome-specific PCR primers. Thus, we developed a new method for the discovery of unknown viruses based on the cDNA--random amplified polymorphic DNA (cDNA-RAPD) technique. Getah virus, belonging to the family Togaviridae in the genus Alphavirus, is a mosquito-borne enveloped RNA virus that was identified using the Virus-Discovery-cDNA RAPD (VIDISCR) method.
    Matched MeSH terms: Viral Proteins/genetics
  12. Mohammed A, Velu AB, Al-Hakami AM, Meenakshisundaram B, Esther P, Abdelwahid SA, et al.
    Trop Biomed, 2020 Dec 01;37(4):1062-1073.
    PMID: 33612758 DOI: 10.47665/tb.37.4.1062
    Pandemic H1N1 influenza virus respiratory illness has become an inevitable global health concern. With antigenic drift, it becomes necessary to have drugs over tailor-made HIN1 vaccine every year. In the current study, we screened many Piperine derivative in which, N-5-(3,4-dimethoxyphenyl)-2E,4E-pentadienylpiperidine (AB05) and was further studied for anti-H1N1influenza virus activity and compared with other stains in-vitro on MDCK cell line. Initial cytotoxic doses of AB05 for the MDCK cell line were > 25µM. The results showed a dose-dependent reduction of the viral plaque's in the adsorption assay with EC50 of 0.33 µM. The mechanism of AB05 was by inhibition of matured viral release as evaluated by the time of virus addition with incubation of 6-10 hours. With the promising H1N1 virucidal activity of AB05, we included various strains of human influenza virus to screen AB05 inhibition of Neuraminidase (NA). The result showed 70% NA inhibition in WSN (H1N1), 90% in H3N2 and Influenza B and 49% in Tamiflu resistant H1N1). Further our In silco docking studies substantiated experimental results by showing the difference in binding and cooperation between H1N1 and N3N2. Together these observations illustrate that Piperine derivative AB05 is a promising lead molecule which needs further evaluation in animal models.
    Matched MeSH terms: Viral Proteins/antagonists & inhibitors*
  13. Wang J, Vijaykrishna D, Duan L, Bahl J, Zhang JX, Webster RG, et al.
    J Virol, 2008 Apr;82(7):3405-14.
    PMID: 18216109 DOI: 10.1128/JVI.02468-07
    The transmission of highly pathogenic avian influenza H5N1 virus to Southeast Asian countries triggered the first major outbreak and transmission wave in late 2003, accelerating the pandemic threat to the world. Due to the lack of influenza surveillance prior to these outbreaks, the genetic diversity and the transmission pathways of H5N1 viruses from this period remain undefined. To determine the possible source of the wave 1 H5N1 viruses, we recently conducted further sequencing and analysis of samples collected in live-poultry markets from Guangdong, Hunan, and Yunnan in southern China from 2001 to 2004. Phylogenetic analysis of the hemagglutinin and neuraminidase genes of 73 H5N1 isolates from this period revealed a greater genetic diversity in southern China than previously reported. Moreover, results show that eight viruses isolated from Yunnan in 2002 and 2003 were most closely related to the clade 1 virus sublineage from Vietnam, Thailand, and Malaysia, while two viruses from Hunan in 2002 and 2003 were most closely related to viruses from Indonesia (clade 2.1). Further phylogenetic analyses of the six internal genes showed that all 10 of those viruses maintained similar phylogenetic relationships as the surface genes. The 10 progenitor viruses were genotype Z and shared high similarity (>/=99%) with their corresponding descendant viruses in most gene segments. These results suggest a direct transmission link for H5N1 viruses between Yunnan and Vietnam and also between Hunan and Indonesia during 2002 and 2003. Poultry trade may be responsible for virus introduction to Vietnam, while the transmission route from Hunan to Indonesia remains unclear.
    Matched MeSH terms: Viral Proteins/genetics
  14. Cheng HM, Foong YT, AbuSamah AJ, Dillner J, Sam CK, Prasad U
    Cancer Immunol Immunother, 1995 Apr;40(4):251-6.
    PMID: 7750123
    The linear antigenic epitopes of the Epstein-Barr virus replication activator protein (ZEBRA), recognised by specific serum IgG in nasopharyngeal carcinoma (NPC), were determined. This was achieved by synthesizing the entire amino acid sequence of ZEBRA as a set of 29, 22-residue peptides with an overlap of 14 amino acids. The ZEBRA peptides were tested in enzyme-linked immunosorbent assay (ELISA) for IgG binding in sera from 37 selected NPC patients who had IgG antibodies to the native ZEBRA protein. The most immunogenic epitope was peptide 1 at the amino-terminal end with 36 of the sera reactive against it. Further analysis of peptide 1, using the multipin peptide-scanning technique, defined a 10-amino-acid sequence FTPDPYQVPF, which was strongly bound by IgG. Two other regions of ZEBRA were also identified as immunodominant IgG epitopes, namely peptide 11 (amino acids 82-103) and peptide 19/20 (amino acids 146-175) with 8-13 of the NPC sera reactive against the peptides. The number of peptides reactive with individual NPC serum varies from 1 to 6 or more and there is some correlation between a greater number of peptide (at least 4) bound and a higher (at least 1:40) titre of serum IgA to viral capsid antigen. The immunodominant ZEBRA peptide 1 could be utilised in IgG ELISA for the detection of NPC.
    Matched MeSH terms: Viral Proteins/immunology*
  15. Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M
    J Virol Methods, 2009 Sep;160(1-2):149-56.
    PMID: 19447142 DOI: 10.1016/j.jviromet.2009.05.006
    SYBR Green I real-time PCR was developed for detection and differentiation of Newcastle disease virus (NDV). Primers based on the nucleocapsid (NP) gene were designed to detect specific sequence of velogenic strains and lentogenic/vaccine strains, respectively. The assay was developed and tested with NDV strains which were characterized previously. The velogenic strains were detected only by using velogenic-specific primers with a threshold cycle (C(t)) 18.19+/-3.63 and a melting temperature (T(m)) 86.0+/-0.28 degrees C. All the lentogenic/vaccine strains, in contrast, were detected only when lentogenic-specific primers were used, with the C(t) value 14.70+/-2.32 and T(m) 87.4+/-0.21 degrees C. The assay had a dynamic detection range which spans over a 5log(10) concentration range, 10(9)-10(5) copies of DNA plasmid/reaction. The velogenic and lentogenic amplifications showed high PCR efficiency of 100% and 104%, respectively. The velogenic and lentogenic amplifications were highly reproducible with assay variability 0.45+/-0.31% and 1.30+/-0.65%, respectively. The SYBR Green I real-time PCR assay detected successfully the virus from tissue samples and oral swabs collected from the velogenic and lentogenic NDV experimental infection, respectively. In addition, the assay detected and differentiated accurately NDV pathotypes from suspected field samples where the results were in good agreement with both virus isolation and analysis of the fusion (F) cleavage site sequence. The assay offers an attractive alternative method for the diagnosis of NDV.
    Matched MeSH terms: Viral Proteins/genetics*
  16. Suppiah J, Yusof MA, Othman KA, Saraswathy TS, Thayan R, Kasim FM, et al.
    PMID: 21323171
    The 2009 pandemic influenza A(H1N1) infection in Malaysia was first reported in May 2009 and oseltamivir was advocated for confirmed cases in postexposure prophylaxis. However, there are cases of oseltamivir-resistance reported among H1N1-positive patients in other countries. Resistance is due to substitution of histidine by tyrosine at residue 275 (H275Y) of neuraminidase (NA). In this study, we have employed Sanger sequencing method to investigate the occurrence of mutations in NA segments of 67 pandemic 2009 A(H1N1) viral isolates from Malaysian patients that could lead to probable oseltamivir resistance. The sequencing analysis did not yield mutation at residue 275 for all 67 isolates indicating that our viral isolates belong to the wild type and do not confer resistance to oseltamivir.
    Matched MeSH terms: Viral Proteins/genetics
  17. Tio PH, Jong WW, Cardosa MJ
    Virol J, 2005;2:25.
    PMID: 15790424
    The search for the dengue virus receptor has generated many candidates often identified only by molecular mass. The wide host range of the viruses in vitro combined with multiple approaches to identifying the receptor(s) has led to the notion that many receptors or attachment proteins may be involved and that the different dengue virus serotypes may utilize different receptors on the same cells as well as on different cell types.
    Matched MeSH terms: Viral Proteins
  18. Mustafa S, Abd-Aziz N, Saw WT, Liew SY, Yusoff K, Shafee N
    Vaccines (Basel), 2020 Dec 07;8(4).
    PMID: 33297428 DOI: 10.3390/vaccines8040742
    Enterovirus 71 (EV71) is the major causative agent in hand, foot, and mouth disease (HFMD), and it mainly infects children worldwide. Despite the risk, there is no effective vaccine available for this disease. Hence, a recombinant protein construct of truncated nucleocapsid protein viral protein 1 (NPt-VP1198-297), which is capable of inducing neutralizing antibody against EV71, was evaluated in a mouse model. Truncated nucleocapsid protein Newcastle disease virus that was used as immunological carrier fused to VP1 of EV71 as antigen. The recombinant plasmid carrying corresponding genes was constructed by recombinant DNA technology and the corresponding protein was produced in Escherichia coli expression system. The recombinant NPt-VP1198-297 protein had elicited neutralizing antibodies against EV71 with the titer of 1:16, and this result is higher than the titer that is elicited by VP1 protein alone (1:8). It was shown that NPt containing immunogenic epitope(s) of VP1 was capable of inducing a greater functional immune response when compared to full-length VP1 protein alone. It was capable to carry larger polypeptide compared to full-length NP protein. The current study also proved that NPt-VP1198-297 protein can be abundantly produced in recombinant protein form by E. coli expression system. The findings from this study support the importance of neutralizing antibodies in EV71 infection and highlight the potential of the recombinant NPt-VP1198-297 protein as EV71 vaccine.
    Matched MeSH terms: Viral Proteins
  19. Gaur P, Kumar P, Sharma A, Lal SK
    Lett Appl Microbiol, 2020 Apr;70(4):252-258.
    PMID: 31990997 DOI: 10.1111/lam.13279
    Neuraminidase (NA) is an integral membrane protein of influenza A virus (IAV) and primarily aids in the release of progeny virions, following the intracellular viral replication cycle. In an attempt to discover new functions of NA, we conducted a classical yeast two-hybrid screen and found acute myeloid leukaemia marker 1 (AML1) as a novel interacting partner of IAV-NA. The interaction was further validated by co-immunoprecipitation in IAV-infected cells and in an in vitro coupled transcription/translation system. Interestingly, we found an increase in the expression of AML1 upon IAV infection in a dose-dependent manner. As expected, we also observed an increase in the IFN-β levels, the first line of defence against viral infections. Subsequently, when AML1 was downregulated using siRNA, the IFN-β levels were found to be remarkably reduced. Our study also shows that AML1 is induced upon IAV infection and results in the induction of IFN-β. Thus, AML1 is proposed to be an important player in IFN induction and has a role in an antiviral response against IAV infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Influenza epidemics and pandemics are constant threats to human health. Development of antiviral therapeutics has focused on important and major IAV proteins as targets. However, the rate at which this virus mutates makes the task challenging. Thus, next-generation approaches aim at host cellular proteins that aid the virus in its replication. This study reports a new host-virus interaction, of acute myeloid leukaemia marker 1 (AML1) with influenza A neuraminidase (IAV-NA). We have found that this interaction has a direct effect on the upregulation of host IFN-β response. Further studies may lead to a greater understanding of this new innate defence pathway in infected cells.
    Matched MeSH terms: Viral Proteins
  20. Zaborowska J, Isa NF, Murphy S
    Inside Cell, 2016 04;1(2):106-116.
    PMID: 27398404
    Positive transcription elongation factor b (P-TEFb), which comprises cyclin-dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P-TEFb is required for productive elongation of transcription of protein-coding genes by RNA polymerase II (pol II). In addition, P-TEFb-mediated phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P-TEFb could be effective anti-viral agents.
    Matched MeSH terms: Viral Proteins
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links