Displaying publications 101 - 106 of 106 in total

Abstract:
Sort:
  1. Lim WS, Ng DL, Kor SB, Wong HK, Tengku-Muhammad TS, Choo QC, et al.
    Cytokine, 2013 Jan;61(1):266-74.
    PMID: 23141142 DOI: 10.1016/j.cyto.2012.10.007
    Peroxisome proliferator activated receptor-alpha (PPARα) plays a major role in the regulation of lipid and glucose homeostasis, and inflammatory responses. The objectives of the study were to systematically investigate the effects of TNF-α and its regulatory pathway on PPARα expression in HepG2 cells using Real-Time RT-PCR and western blot analysis. Here, TNF-α suppressed PPARα mRNA expression in a dose- and time-dependent manner at the level of gene transcription. Pre-treatment of cells with 10μM of Wedelolactone for 2h was sufficient to restore PPARα expression to basal levels and also affected the expression of PPARα-regulated genes. This study also demonstrated that TNF-α represses PPARα expression by augmenting the activity of canonical NF-κB signalling pathway. This was shown by the abrogation of TNF-α-mediated PPARα down-regulation, after both p65 and p50 were knocked down via siRNA. The IKK contributes to IκBα degradation and mediates inducible phosphorylation of p105 at Ser933. Surprisingly, phosphorylation of p65 at Ser468 and Ser536 were severely abrogated with Wedelolactone inhibition, suggesting that Ser468 and Ser536, but not Ser276, may mediate the TNF-α inhibitory action on PPARα gene expression. These results suggest that TNF-α might, at least in part, suppress PPARα expression through activation of IKK/p50/p105/p65 pathway. Furthermore, phosphorylation of p65 at Ser468 and Ser536 may play a crucial role in the mechanism that limits PPARα production in the human HepG2 cells.
    Matched MeSH terms: RNA, Small Interfering
  2. Zainuddin A, Chua KH, Tan JK, Jaafar F, Makpol S
    J Physiol Biochem, 2017 Feb;73(1):59-65.
    PMID: 27743340 DOI: 10.1007/s13105-016-0524-2
    Human diploid fibroblasts (HDFs) proliferation in culture has been used as a model of aging at the cellular level. Growth arrest is one of the most important mechanisms responsible for replicative senescence. Recent researches have been focusing on the function of vitamin E in modulating cellular signaling and gene expression. Therefore, the aim of this study was to elucidate the effect of palm γ-tocotrienol (vitamin E) in modulating cellular aging through p16INK4a pathway in HDF cells. Primary culture of senescent HDFs was incubated with 70 μM of palm γ-tocotrienol for 24 hours. Silencing of p16INK4a was carried out by siRNA transfection. RNA was extracted from the different treatment groups and gene expression analysis was carried out by real-time reverse transcription polymerase chain reaction. Proteins that were regulated by p16INK4a were determined by western blot technique. The finding of this study showed that p16INK4a mRNA was overexpressed in senescent HDFs, and hypophosphorylated-pRb and cyclin D1 protein expressions were increased (p 
    Matched MeSH terms: RNA, Small Interfering
  3. Md Fuzi AA, Omar SZ, Mohamed Z, Mat Adenan NA, Mokhtar NM
    Taiwan J Obstet Gynecol, 2018 Apr;57(2):217-226.
    PMID: 29673664 DOI: 10.1016/j.tjog.2018.02.009
    OBJECTIVE: To validate the gene expression profile obtained from the previous microarray analysis and to further study the biological functions of these genes in endometrial cancer. From our previous study, we identified 621 differentially expressed genes in laser-captured microdissected endometrioid endometrial cancer as compared to normal endometrial cells. Among these genes, 146 were significantly up-regulated in endometrial cancer.

    MATERIALS AND METHODS: A total of 20 genes were selected from the list of up-regulated genes for the validation assay. The qPCR confirmed that 19 out of the 20 genes were up-regulated in endometrial cancer compared with normal endometrium. RNA interference (RNAi) was used to knockdown the expression of the upregulated genes in ECC-1 and HEC-1A endometrial cancer cell lines and its effect on proliferation, migration and invasion were examined.

    RESULTS: Knockdown of MIF, SOD2, HIF1A and SLC7A5 by RNAi significantly decreased the proliferation of ECC-1 cells (p < 0.05). Our results also showed that the knockdown of MIF, SOD2 and SLC7A5 by RNAi significantly decreased the proliferation and migration abilities of HEC-1A cells (p < 0.05). Moreover, the knockdown of SLC38A1 and HIF1A by RNAi resulted in a significant decrease in the proliferation of HEC1A cells (p < 0.05).

    CONCLUSION: We have identified the biological roles of SLC38A1, MIF, SOD2, HIF1A and SLC7A5 in endometrial cancer, which opens up the possibility of using the RNAi silencing approach to design therapeutic strategies for treatment of endometrial cancer.

    Matched MeSH terms: RNA, Small Interfering
  4. Ooi SK, Lim TY, Lee SH, Nathan S
    Virulence, 2012 Oct 01;3(6):485-96.
    PMID: 23076282 DOI: 10.4161/viru.21808
    The nematode Caenorhabditis elegans is hypersusceptible to Burkholderia pseudomallei infection. However, the virulence mechanisms underlying rapid lethality of C. elegans upon B. pseudomallei infection remain poorly defined. To probe the host-pathogen interaction, we constructed GFP-tagged B. pseudomallei and followed bacterial accumulation within the C. elegans intestinal lumen. Contrary to slow-killing by most bacterial pathogens, B. pseudomallei caused fairly limited intestinal lumen colonization throughout the period of observation. Using grinder-defective mutant worms that allow the entry of intact bacteria also did not result in full intestinal lumen colonization. In addition, we observed a significant decline in C. elegans defecation and pharyngeal pumping rates upon B. pseudomallei infection. The decline in defecation rates ruled out the contribution of defecation to the limited B. pseudomallei colonization. We also demonstrated that the limited intestinal lumen colonization was not attributed to slowed host feeding as bacterial loads did not change significantly when feeding was stimulated by exogenous serotonin. Both these observations confirm that B. pseudomallei is a poor colonizer of the C. elegans intestine. To explore the possibility of toxin-mediated killing, we examined the transcription of the C. elegans ABC transporter gene, pgp-5, upon B. pseudomallei infection of the ppgp-5::gfp reporter strain. Expression of pgp-5 was highly induced, notably in the pharynx and intestine, compared with Escherichia coli-fed worms, suggesting that the host actively thwarted the pathogenic assaults during infection. Collectively, our findings propose that B. pseudomallei specifically and continuously secretes toxins to overcome C. elegans immune responses.
    Matched MeSH terms: RNA, Small Interfering
  5. Wong SW, Tiong KH, Kong WY, Yue YC, Chua CH, Lim JY, et al.
    Breast Cancer Res Treat, 2011 Jul;128(2):301-13.
    PMID: 20686837 DOI: 10.1007/s10549-010-1055-0
    Recent gene expression profiling studies have identified five breast cancer subtypes, of which the basal-like subtype is the most aggressive. Basal-like breast cancer poses serious clinical challenges as there are currently no targeted therapies available to treat it. Although there is increasing evidence that these tumors possess specific sensitivity to cisplatin, its success is often compromised due to its dose-limiting nephrotoxicity and the development of drug resistance. To overcome this limitation, our goal was to maximize the benefits associated with cisplatin therapy through drug combination strategies. Using a validated kinase inhibitor library, we showed that inhibition of the mTOR, TGFβRI, NFκB, PI3K/AKT, and MAPK pathways sensitized basal-like MDA-MB-468 cells to cisplatin treatment. Further analysis demonstrated that the combination of the mTOR inhibitor rapamycin and cisplatin generated significant drug synergism in basal-like MDA-MB-468, MDA-MB-231, and HCC1937 cells but not in luminal-like T47D or MCF-7 cells. We further showed that the synergistic effect of rapamycin plus cisplatin on basal-like breast cancer cells was mediated through the induction of p73. Depletion of endogenous p73 in basal-like cells abolished these synergistic effects. In conclusion, combination therapy with mTOR inhibitors and cisplatin may be a useful therapeutic strategy in the treatment of basal-like breast cancers.
    Matched MeSH terms: RNA, Small Interfering/genetics
  6. Mohidin TB, Ng CC
    J Biosci, 2015 Mar;40(1):41-51.
    PMID: 25740140
    Epstein-Barr virus (EBV)-encoded BARF1 (BamH1-A Rightward Frame-1) is expressed in EBV-positive malignancies such as nasopharyngeal carcinoma, EBV-associated gastric cancer, B-cell lymphoma and nasal NK/T-cell lymphoma, and has been shown to have an important role in oncogenesis. However, the mechanism by which BARF1 elicits its biological effects is unclear. We investigated the effects of BARF1 silencing on cell proliferation and apoptosis in EBV-positive malignant cells. We observed that BARF1 silencing significantly inhibits cell proliferation and induces apoptosis-mediated cell death by collapsing the mitochondrial membrane potential in AG876 and Hone-Akata cells. BARF1 knockdown up-regulates the expression of pro-apoptotic proteins and downregulates the expression of anti-apoptotic proteins. In BARF1-down-regulated cells, the Bcl-2/BAX ratio is decreased. The caspase inhibitor z-VAD-fmk was found to rescue siBARF1-induced apoptosis in these cells. Immunoblot analysis showed significant increased levels of cleaved caspase 3 and caspase 9. We observed a significant increase in cytochrome c level as well as the formation of apoptosome complex in BARF1-silenced cells. In conclusion, siRNA-mediated BARF1 down-regulation induces caspase-dependent apoptosis via the mitochondrial pathway through modulation of Bcl-2/BAX ratio in AG876 and Hone-Akata cells. Targeting BARF1 using siRNA has the potential to be developed as a novel therapeutic strategy in the treatment of EBV-associated malignancies.
    Matched MeSH terms: RNA, Small Interfering
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links