RESULTS: Firstly, from the expression profiles of Na+/K+/2Cl- cotransporter, chloride channel protein 2, and ABC transporter, it turned out that the 24 h might be the most influenced duration in the short-term stress. We collected megalopa under different salinity for 24 h and then submitted to mRNA profiling. Totally, 57.87 Gb Clean Data were obtained. The comparative genomic analysis detected 342 differentially expressed genes (DEGs). The most significantly DEGs include gamma-butyrobetaine dioxygenase-like, facilitated trehalose transporter Tret1, sodium/potassium-transporting ATPase subunit alpha, rhodanese 1-like protein, etc. And the significantly enriched pathways were lysine degradation, choline metabolism in cancer, phospholipase D signaling pathway, Fc gamma R-mediated phagocytosis, and sphingolipid signaling pathway. The results indicate that in the short-term salinity stress, the megalopa might regulate some mechanism such as metabolism, immunity responses, osmoregulation to adapt to the alteration of the environment.
CONCLUSIONS: This study represents the first genome-wide transcriptome analysis of S. paramamosain megalopa for studying its stress adaption mechanisms under different salinity. The results reveal numbers of genes modified by salinity stress and some important pathways, which will provide valuable resources for discovering the molecular basis of salinity stress adaptation of S. paramamosain larvae and further boost the understanding of the potential molecular mechanisms of salinity stress adaptation for crustacean species.
METHODS: A total of 20 PWUK and 20 age matched non-kratom using healthy controls were recruited. Data collected from PWUK included patterns of kratom use, severity of kratom dependence, and severity of depressive symptoms during abstinence from kratom. The mRNA expression of binding immunoglobulin protein ( BiP ), X-box binding protein 1, activating transcription factor 4, and C/-EBP homologous protein ( CHOP ) (major indicators of ER stress response) were analyzed using quantitative reverse transcription polymerase chain reaction in leucocyte-derived total RNA sample of the participants.
RESULTS: PWUK regardless of their pattern of kratom use recorded significantly higher expression of BiP mRNA compared with controls. Expression of CHOP mRNA was only significantly higher in those who first consumed kratom at the age of 18 years and above and those who have been using kratom for longer than 6 years, compared with controls. Higher expression of BiP , ATF4 , and CHOP mRNA were significantly positive correlated with greater severity of kratom dependence. Although only higher expression of BiP and CHOP mRNA were significantly positively correlated with greater severity of depressive symptoms.
CONCLUSIONS: Regular kratom consumption may activate the ER stress pathway and there may be a link between altered ER stress response and kratom dependence and kratom induced depressive symptoms.