METHODS: Retrospective review of consecutive rEBUS bronchoscopy performed with a 6.2 mm conventional bronchoscope navigated via manual bronchial branch reading technique over 18 months.
RESULTS: Ninety-eight target lesions were included. Median lesion size was 2.67 cm (IQR 2.22-3.38) with 96.9% demonstrating positive CT bronchus sign. Majority (86.7%) of lesions were situated in between the third and fifth airway generations. Procedure was performed with endotracheal intubation in 43.9% and fluoroscopy in 72.4%. 98.9% of lesions were successfully navigated and verified by rEBUS following the pre-planned airway road map. Bidirectional guiding device was employed in 29.6% of cases. Clinical diagnosis was secured in 88.8% of cases, majority of which were malignant disease. The discrepancy between navigation success and diagnostic yield was 10.1%. Target PPL located within five airway generations was associated with better diagnostic yield (95.1% vs. 58.8%, P
METHODS: We retrospectively analysed case records of patients who underwent pericardiocentesis for cardiac tamponade during the two consecutive years (1 January 2018 to 31 December 2019) at Hospital Sultanah Nora Ismail, Batu Pahat, in Johor, Malaysia.
RESULTS: There were ten patients (eight males, two females; age range 20 to 70 years old, mean age 36 years old) who underwent pericardiocentesis for cardiac tamponade during the said period. Malignancy (40%), tuberculosis (30%), idiopathic (20%), and bacterial (10%) were among the common causes of the pericardial effusion in this center. The commonest symptoms were breathlessness (90%), chest pain (60%), cough (50%), and unexplained fever (20%). Pulsus paradoxus was the most speciÿ c sign (100%) for the presence of echocardiographic feature of cardiac tamponade. Two of the patients with tuberculous pericarditis had retroviral disease; one patient had bacterial pericarditis due to salmonella typhi.
CONCLUSION: This study has conÿ rmed that there are many etiologies and presentation of cardiac tamponade; clinicians should be alert as urgent pericardiocentesis is lifesaving.
OBJECTIVE: We sought to examine the role of the IL-33/ST2 axis in lung inflammation on acute ozone exposure in mice.
METHODS: ST2- and Il33-deficient, IL-33 citrine reporter, and C57BL/6 (wild-type) mice underwent a single ozone exposure (1 ppm for 1 hour) in all studies. Cell recruitment in lung tissue and the bronchoalveolar space, inflammatory parameters, epithelial barrier damage, and airway hyperresponsiveness (AHR) were determined.
RESULTS: We report that a single ozone exposure causes rapid disruption of the epithelial barrier within 1 hour, followed by a second phase of respiratory barrier injury with increased neutrophil recruitment, reactive oxygen species production, AHR, and IL-33 expression in epithelial and myeloid cells in wild-type mice. In the absence of IL-33 or IL-33 receptor/ST2, epithelial cell injury with protein leak and myeloid cell recruitment and inflammation are further increased, whereas the tight junction proteins E-cadherin and zonula occludens 1 and reactive oxygen species expression in neutrophils and AHR are diminished. ST2 neutralization recapitulated the enhanced ozone-induced neutrophilic inflammation. However, myeloid cell depletion using GR-1 antibody reduced ozone-induced lung inflammation, epithelial cell injury, and protein leak, whereas administration of recombinant mouse IL-33 reduced neutrophil recruitment in Il33-deficient mice.
CONCLUSION: Data demonstrate that ozone causes an immediate barrier injury that precedes myeloid cell-mediated inflammatory injury under the control of the IL-33/ST2 axis. Thus IL-33/ST2 signaling is critical for maintenance of intact epithelial barrier and inflammation.
METHODS: A literature search was performed following the PRISMA guidelines. Systematic searches were performed in PubMed, Scopus, Cochrane and Embase databases in October 2022. Retrospective and prospective studies on the delta-radiomics model for RT-induced toxicity were included based on predefined PICOS criteria. A random-effect meta-analysis of AUC was performed on the performance of delta-radiomics models, and a comparison with non-delta radiomics models was included.
RESULTS: Of the 563 articles retrieved, 13 selected studies of RT-treated patients on different types of cancer (HNC = 571, NPC = 186, NSCLC = 165, oesophagus = 106, prostate = 33, OPC = 21) were eligible for inclusion in the systematic review. Included studies show that morphological and dosimetric features may improve the predictive model performance for the selected toxicity. Four studies that reported both delta and non-delta radiomics features with AUC were included in the meta-analysis. The AUC random effects estimate for delta and non-delta radiomics models were 0.80 and 0.78 with heterogeneity, I2 of 73% and 27% respectively.
CONCLUSION: Delta-radiomics-based models were found to be promising predictors of predefined end points. Future studies should consider using standardized methods and radiomics features and external validation to the reviewed delta-radiomics model.
OBJECTIVES: This study aimed to investigate the in vitro growth inhibition of genetically engineered human umbilical cord-derived mesenchymal stromal cells (hUCMSC) expressing IL-12 on H1975 human lung adenocarcinoma cells.
MATERIALS AND METHODS: Both adenoviral method and electroporation which used to generate hUCMSC-IL12 were compared. The method with better outcome was selected to generate hUCMSC-IL12 for the co-culture experiment with H1975 or MRC-5 cells. Characterisation of hUCMSC and hUCMSC-IL12 was performed.
RESULTS: Adenoviral method showed superior results in transfection efficiency (63.6%), post-transfection cell viability (82.6%) and hIL-12 protein expression (1.2 x 107 pg/ml) and thus was selected for the downstream experiments. Subsequently, hUCMSC-IL12 showed significant inhibition effect on H1975 cells after 5 days of co-culture. No significant difference was observed for all other co-culture groups, indicating that the inhibition effect was because of hIL-12. Lastly, the integrity of hUCMSC-IL12 remained unaffected by the transduction through examination of their surface markers and differentiation properties.
CONCLUSION: This study provided proof of concept that hUCMSC can be genetically engineered to express hIL-12 which exerts direct growth inhibition effect on human lung adenocarcinoma cells.