Displaying publications 101 - 120 of 137 in total

Abstract:
Sort:
  1. Bashir A, Hassan AA, Salmah MR, Rahman WA
    PMID: 18564706
    The efficacy of the larvicidal and pupicidal agent (Agnique) MMF was evaluated against larvae of An. arabiensis and Culex (Diptera: Culicidae) under field conditions in Bahary Locality, Khartoum, Sudan. At an applied dosage of 0.25 ml/m2, MMF resulted in 89.4, 79.8 and 88.2% reductions in L3-L4 instars An. arabiensis and 63.5% in Culex larvae (all stages) 24 to 72 hours post-treatment. Pupae were completely eliminated (100%) within 24 hours posttreatment. The earlier instars (L1-L2) of An. arabiensis were more tolerant with a 62.5% reduction at 72 hours post-treatment compared to (L3-L4) instars and pupae. At 7-days post-treatment Agnique gave a 57.5% reduction in L1-L2 and 92.6% in L3-L4 instar larvae of An. arabiensis and 57.3% and 86.4% in Culex larvae and pupae, respectively. We conclude that Agnique can perform effectively against L3-L4 instars and pupae of An. arabiensis for only 1 week, and 3 to 4 days against L1-L2 instars of Culex spp.
    Matched MeSH terms: Culex/drug effects*
  2. Cheah SX, Tay JW, Chan LK, Jaal Z
    Parasitol Res, 2013 Sep;112(9):3275-82.
    PMID: 23835922 DOI: 10.1007/s00436-013-3506-0
    This study focuses on the larvicidal, oviposition, and ovicidal effects of a crude extract of Artemisia annua against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus. Dried cells of Artemisia annua from cell suspension cultures were extracted using hexane. The extract showed moderate larvicidal effects against mosquitoes. At 24-h post treatment, the LC50 values for Anopheles sinensis, Aedes aegypti, and Culex quinquefasciatus were recorded as 244.55, 276.14, and 374.99 ppm, respectively. The percentage mortality of larvae was directly proportional to the tested concentration. Anopheles sinensis was found to be the most susceptible species, whereas Culex quinquefasciatus was the most tolerant to the Artemisia annua extract. The results indicated that the Artemisia annua extract showed concentration-dependent oviposition deterrent activity and had a strong deterrent effect. At 500 ppm, the percentage effective repellency was more than 85% compared with the control group for all the species, with oviposition activity index values of -0.94, -0.95, and -0.78 for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. In the ovicidal assay, the percentage hatchability of eggs after treatment with 500 ppm of Artemisia annua extract was significantly lower than the control, with values of 48.84 ± 4.08, 38.42 ± 3.67, and 79.35 ± 2.09% for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. Artemisia annua was found to be more effective against Aedes aegypti and Anopheles sinensis compared with Culex quinquefasciatus. This study indicated that crude extract of A. annua could be a potential alternative for use in vector management programs.
    Matched MeSH terms: Culex/drug effects*; Culex/physiology
  3. Shigeharu Sato, Tomonori Hoshi, Bumpei Tojo, Samson Yodot, Joni Jain
    MyJurnal
    Introduction: Collecting mosquitoes is essential for research in mosquito-borne diseases, but the light traps used for that purpose are expensive and often difficult to obtain around research fields. We designed a new 3D-printable mosquito light trap that can be made inexpensively anywhere where electricity is available (Hoshi et al, Scientific Reports, in press). In this study, we produced that trap in Sabah and demonstrated its usefulness in the field. Meth-ods: With a 3D printer, the main parts of the trap - body, lid, lamp stand and collection box - were printed in Kota Kinabalu using black polylactic acid (PLA) filaments purchased online. All other parts such as the computer fan and batteries were commercially available at local shops in Sabah. The parts were assembled into the complete units at Universiti Malaysia Sabah’s Rural Medical Education Centre (RMEC) in Sikuati, Kudat. Demonstration was performed at two sites in the Kudat district: RMEC campus and the premises of a local farm in Kampung Paradason. Results: The 3D traps collected 6 and 7 different species of mosquitoes at RMEC and Paradason sites, respectively. The numbers of mosquito species collected by the commercially-available CDC model-512 traps in parallel experiments were 2 (RMEC) and 10 (Paradason). The species collected by the 3D traps included Aedes albopictus (vector transmitting Dengue virus), Anopheles barbumbrosus (malaria), Culex quinquefasciatus (Wuchereria bancrofti, avian malaria, and arboviruses including Japanese encephalitis and Zika viruses) and Mansonia indiana (Brugia malayi). Conclu-sion: The 3D light trap which was produced in Sabah demonstrated its usefulness in the field tests performed in the Kudat district. This model can be used as an alternative to the rather expensive commercial light traps to collect the vector insects transmitting mosquito-borne diseases such as malaria, dengue, Japanese encephalitis, Zika fever and filariasis.
    Matched MeSH terms: Culex
  4. Alkhayat FA, Ahmad AH, Rahim J, Dieng H, Ismail BA, Imran M, et al.
    Saudi J Biol Sci, 2020 Sep;27(9):2358-2365.
    PMID: 32884417 DOI: 10.1016/j.sjbs.2020.07.006
    Mosquito borne diseases have remained a grave threat to human health and are posing a significant burden on health authorities around the globe. The understanding and insight of mosquito breeding habitats features is crucial for their effective management. Comprehensive larval surveys were carried out at 14 sites in Qatar. A total of 443 aquatic habitats were examined, among these 130 were found positive with Culex pipiens, Cx. quinquefasciatus, Cx. mattinglyi, Ochlerotatus dorsalis, Oc. caspius and Anopheles stephensi. The majority of positive breeding habitats were recorded in urban areas (67.6%), followed by livestock (13.8%), and least were in agriculture (10.7%). An. stephensi larvae were positively correlated with Cx. pipien, Cx. quinquefasciatus, and negatively with water salinity. Large and shaded habitats were the most preferred by An. stephensi. In addition, Cx. pipiens was positively associated with the turbidity and pH, and was negatively associated with vegetation and habitat size. A negative association of Cx. quinquefasciatus with dissolved oxygen, water temperature, and salinity, while positive with habitat surface area was observed. Oc. dorsalis was negatively correlated with pH, water temperature, depth, and habitat surface area, whereas salinity water was more preferable site for females to lay their eggs. These results demonstrate that environmental factors play a significant role in preference of both anopheline and culicine for oviposition, while their effective management must be developed as the most viable tool to minimize mosquito borne diseases.
    Matched MeSH terms: Culex
  5. Yap HH, Jahangir K, Zairi J
    J Am Mosq Control Assoc, 2000 Sep;16(3):241-4.
    PMID: 11081653
    Four insect repellent products (RPs) (RP 1, Experimental Repellent Lotion [Bayrepel 12%]; RP 2, Experimental Repellent Cream [Bayrepel 5%]; RP 3, Off! Insect Repellent II Aerosol [deet 15%]; and RP 4, Off! Skintastic II Cream [deet 7.5%]) were evaluated simultaneously for their efficacy against vector and nuisance mosquitoes. The aim of this study was to compare the relative efficacy of RPs based on a new repellent compound, Bayrepel (1-piperidinecarboxylic acid, 2-(2-hydroxyethyl)-1-methylpropylester), with deet (N,N-diethyl-m-toluamide)-based RPs. An 8-h field efficacy of above repellents was evaluated against the day-biting mosquito (Aedes albopictus) and night-biting mosquitoes (Culex quinquefasciatus and Anopheles spp.). Evaluation was carried out by exposing humans with repellent-treated bare limbs to mosquitoes landing and to mosquitoes landing and biting. Repellent product 1 or 2 was applied on the left arm and leg, whereas RP 3 or 4 was applied on the right arm and leg, respectively. Application of these 4 RPs significantly reduced (P < 0.05) the landing and the landing and biting of day-biting and night-biting mosquitoes. All 4 RPs were found to be equally effective (P < 0.05) against Ae. albopictus and Cx. quinquefasciatus. However, for protection against Anopheles spp., RPs 1 and 3 exhibited significantly (P < 0.05) better repellency effect than RPs 2 and 4.
    Matched MeSH terms: Culex
  6. Yap HH, Lee YW, Zairi J, Jahangir K, Adanan CR
    J Am Mosq Control Assoc, 2001 Mar;17(1):28-32.
    PMID: 11345415
    Indoor bioefficacy of the thermal fogging application of Pesguard FG 161, a formulation containing both knockdown and killing agents (active ingredient [AI]: d-tetramethrin 4% [w/w] and cyphenothrin 12% [w/w]) was compared with Resigen5 (AI: s-bioallethrin 0.8% [w/w], permethrin 125/75] 18.7% [w/w], and piperonyl butoxide 16.8% [w/w]), another pyrethroid formulation, as larvicides and adulticides against Aedes aegypti, Aedes albopictus, Anopheles sinensis, and Culex quinquefasciatus using a portable Agrofog AF35 sprayer indoors in houses on Penang Island, Malaysia. Pesguard FG 161 at the concentrations tested was effective against all 4 mosquito species tested. The water-based Pesguard FG 161 performed far better as a larvicide than the diesel-based formulation. Resigen was also effective as a larvicide and adulticide against all 4 mosquito species tested. Larvae of Ae. aegypti were most susceptible to water-based Pesguard FG 161, followed by Cx. quinquefasciatus, An. sinensis, and Ae. albopictus. Even at the lowest concentrations tested, Pesguard FG 161 showed adequate adulticidal properties. At higher dosages, water-based Pesguard FG 161 proved effective as a larvicide against all 4 mosquito species.
    Matched MeSH terms: Culex
  7. Hidayatulfathi O, Sallehuddin S, Ibrahim J
    Trop Biomed, 2004 Dec;21(2):61-7.
    PMID: 16493400
    The adulticidal activity of methanol extracts from three Malaysian plants namely Acorus calamus Linn., Litsea elliptica Blume and Piper aduncum Linn. against adult of Aedes aegypti (L.) were studied. Standard WHO bioassay tests were used to evaluate the effectiveness of these plant extracts. The hexane fraction from methanol extract of Acorus calamus rhizome was the most effective, exhibiting LC50 and LC90 values of 0.04 mgcm(-2) and 0.09 mgcm(-2) respectively. For L. elliptica, the methanol fraction also displayed good adulticidal property with the LC50 and LC90 values of 0.11 mgcm(-2) and 6.08 mgcm(-2) respectively. It is found that hexane fraction of the P. aduncum crude extract was the least effective among the three plants showing LC50 and LC90 values of 0.20 mgcm(-2) and 5.32 mgcm(-2), respectively. However, although A. calamus showed lowest LC values, the LT50 results indicated that the methanol fraction of L. elliptica was most potent extract among the extracts tested.
    Matched MeSH terms: Culex
  8. Tabbabi A, Daaboub J, Ben-Cheikh R, Laamari A, Feriani M, Boubaker C, et al.
    Trop Biomed, 2018 Dec 01;35(4):872-879.
    PMID: 33601837
    Despite the public health importance of Culex pipiens pipiens, their resistance to pirimiphos-methyl insecticides has not been explored enough. Late third and early fourth larvae of Culex pipiens pipiens were collected from three localities between 2003 and 2005 in Northern and Southern Tunisia. All bioassays were carried out using pirimiphosmethyl and propoxur insecticides. Populations of Culex pipiens pipiens were susceptible, moderate and resistant to pirimiphos-methyl insecticide. Resistance to this compound ranged from 2.62 in sample # 2 to 19.9 in sample # 1. The moderate resistance (5.25) was recorded in sample # 3. Synergist's tests showed that the resistance to pirimiphos-methyl was not affected by detoxification enzymes. However, biochemical assays showed the involvement of both metabolic (esterases) and target site (insensitive acetylcholinesterase) resistance mechanisms. The highest frequencies of the resistant phenotypes ([RS] and [RR]) (<0.74) were detected in the most resistant samples (#1). Four esterases enzymes including C1 encoded by the Est-1 locus and three esterases encoded by the Ester super locus: A2-B2, A4-B4 (or A5-B5, which has the same electrophoretic mobility) and B12 were detected. The highest (0.61) and the lowest (0.22) frequencies of these esterases were recorded in samples # 1 (Sidi Hcine) and # 2 (El Fahs) which recorded the highest and the lowest level of resistance, respectively. Monitoring of insecticide resistance should be evaluated regularly for management of vector control.
    Matched MeSH terms: Culex
  9. Tabbabi A, Daaboub J, Laamari A, Ben-Cheikh R, Feriani M, Boubaker C, et al.
    Trop Biomed, 2018 Dec 01;35(4):1107-1114.
    PMID: 33601857
    The aim of this study was to evaluate the resistance status of Culex pipiens pipiens to pirimiphos-methyl insecticide. Three field populations of mosquitoes were collected from Tunisia and analyzed in laboratory. The samples studied showed low level of resistance not exceeding 5-folds. The low resistance recorded is particularly interesting, because it leaves a range of tools useable by vector control services. Both metabolic and target-site resistance mechanisms were identified. Different esterases of high activity including A2-B2, A4-B4 (and/or A5-B5) and B12 were observed in studied field samples using starch electrophoresis although opposite results were found using synergists tests on samples # 1 and 3. The polymorphism of AChE1 (Acetylcholinesterase) was analyzed and three phenotypes were detected: susceptible (ACHE1S, phenotype [SS]), resistant (ACHE1R, phenotype [RR]), and heterozygous (phenotype [RS]) of ACHE1. The resistance of Culex pipiens pipiens to pirimiphos-methyl remains low although the occurrences of multiple resistance mechanisms are able to confer high resistance levels to organophosphate insecticides. Therefore, continuous monitoring of resistance is fundamental for rational use of insecticides and mosquito control programs.
    Matched MeSH terms: Culex
  10. Hill MN, Varma MG, Mahadevan S, Meers PD
    J Med Entomol, 1969 Oct;6(4):398-406.
    PMID: 4391230
    Matched MeSH terms: Culex
  11. Md Naim D, Kamal NZM, Mahboob S
    Saudi J Biol Sci, 2020 Mar;27(3):953-967.
    PMID: 32127775 DOI: 10.1016/j.sjbs.2020.01.021
    The population genetics study is crucial as it helps in understanding the epidemiological aspects of dengue and help improving a vector control measures. This research aims to investigate the population genetics structure of two common species of Aedes mosquitoes in Penang; Aedes aegypti and Aedes albopictus using Cytochrome Oxidase I (COI) mitochondrial DNA (mtDNA) marker. Molecular investigations were derived from 440 bp and 418 bp mtDNA COI on 125 and 334 larvae of Aedes aegypti and Aedes albopictus respectively, from 32 locations in Penang. All samples were employed in the BLASTn for species identification. The haplotype diversity, nucleotide diversity, neutrality test and mismatch distribution analysis were conducted in DnaSP version 5.10.1. AMOVA analysis was conducted in ARLEQUIN version 3.5 and the phylogenetic reconstructions based on maximum likelihood (ML) and neighbor-joining (NJ) methods were implemented in MEGA X. The relationships among haplotypes were further tested by creating a minimum spanning tree using Network version 4.6.1. All samples were genetically identified and clustered into six distinct species. Among the species, Ae. albopictus was the most abundant (67.2%), followed by Ae. aegypti (25.2%) and the rest were counted for Culex sp. and Toxorhynchites sp. Both Ae. aegypti and Ae. albopictus show low nucleotide diversity (π) and high haplotype diversity (h), while the neutrality test shows a negative value in most of the population for both species. There are a total of 39 and 64 haplotypes recorded for Ae. aegypti and Ae. albopictus respectively. AMOVA analysis revealed that most of the variation occurred within population for both species. Mismatch distribution analysis showed bimodal characteristic of population differentiation for Ae. aegypti but Ae. albopictus showed unimodal characteristics of population differentiation. Genetic distance based on Tamura-Nei parameter showed low genetic divergent within population and high genetic divergent among population for both species. The maximum likelihood tree showed no obvious pattern of population genetic structure for both Ae. aegypti and Ae. albopictus from Penang and a moderate to high bootstrap values has supported this conclusion. The minimum spanning network for Ae. aegypti and Ae. albopictus showed five and three dominant haplotypes respectively, which indicates a mixture of haplotypes from the regions analysed. This study revealed that there is no population genetic structure exhibited by both Ae. aegypti and Ae. albopictus in Penang. Mutation has occurred rapidly in both species and this will be challenging in controlling the populations. However, further analysis needed to confirm this statement.
    Matched MeSH terms: Culex
  12. Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10504-10514.
    PMID: 28988379 DOI: 10.1007/s11356-017-0313-7
    The control of filariasis vectors has been enhanced in several areas, but there are main challenges, including increasing resistance to insecticides and lack of cheap and eco-friendly products. The toxicity of iron (Fe0) and iron oxide (Fe2O3) nanoparticles has been scarcely investigated yet. We studied the larvicidal and pupicidal activity of Fe0 and Fe2O3 nanoparticles against Culex quinquefasciatus. Fe0 and Fe2O3 nanoparticles produced by green (using a Ficus natalensis aqueous extract) and chemical nanosynthesis, respectively, were analyzed by UV-Vis spectrophotometry, FT-IR spectroscopy, XRD analysis, SEM, and EDX assays. In larvicidal and pupicidal experiments on Cx. quinquefasciatus, LC50 of Fe0 nanoparticles ranged from 20.9 (I instar larvae) to 43.7 ppm (pupae) and from 4.5 (I) to 22.1 ppm (pupae) for Fe2O3 nanoparticles synthesized chemically. Furthermore, the predation efficiency of the guppy fish, Poecilia reticulata, after a single treatment with sub-lethal doses of Fe0 and Fe2O3 nanoparticles was magnified. Overall, this work provides new insights about the toxicity of Fe0 and Fe2O3 nanoparticles against mosquito vectors; we suggested that green and chemical fabricated nano-iron may be considered to develop novel and effective pesticides.
    Matched MeSH terms: Culex
  13. Al-Abd NM, Nor ZM, Al-Adhroey AH, Suhaimi A, Sivanandam S
    PMID: 24298292 DOI: 10.1155/2013/986573
    Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.
    Matched MeSH terms: Culex
  14. Nurin-Zulkifli IM, Chen CD, Wan-Norafikah O, Lee HL, Faezah K, Izzul AA, et al.
    PMID: 26867376
    Surveillance of mosquitoes and their distribution in association with rainfall, relative humidity, and temperature were conducted in selected suburban and forested areas, namely, Sungai Penchala (Kuala Lumpur) and Taman Alam (Selangor) for 12 months. Armigeres kesseli was the most abundant species in Sungai Penchala while Aedes butleri was the most dominant species in Taman Alam. A positive correlation between mosquito distribution and rainfall was observed in selected mosquito species in Sungai Penchala (Armigeres kesseli, r = 0.75; Armigeres subalbatus, r = 0.62; and Aedes albopictus, r = 0.65) and Taman Alam (Armigeres sp, r = 0.59; Ae. butleri, r = 0.85; and Ae. albopictus, r = 0.62). However, no significant cor- relation was found either between selected mosquito species in both study areas and relative humidity or temperature. Results obtained suggested that vector control programs to be conducted based on temporal distribution of vectors in order to achieve beneficial outcomes with effective costing.
    Matched MeSH terms: Culex
  15. Tsuchie H, Oda K, Vythilingam I, Thayan R, Vijayamalar B, Sinniah M, et al.
    Jpn. J. Med. Sci. Biol., 1994 Apr;47(2):101-7.
    PMID: 7853748
    Two hundred and forty nucleotides from the pre-M gene region of 10 Japanese encephalitis (JE) virus strains isolated in Malaysia in 1992 were sequenced and compared with the other JE virus strains from different geographic areas in Asia. Our JE virus strains belong to the largest genotypic group that includes strains isolated in temperate regions such as Japan, China, and Taiwan. Our Malaysian JE virus strains differed in 32 nucleotides (13.3%) from WTP/70/22 strain isolated from Malaysia in 1970, which belonged to another distinct genotypic group.
    Matched MeSH terms: Culex/virology
  16. Zhang W, Chen S, Mahalingam S, Wang M, Cheng A
    J Gen Virol, 2017 Oct;98(10):2413-2420.
    PMID: 28874226 DOI: 10.1099/jgv.0.000908
    Tembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People's Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.
    Matched MeSH terms: Culex/virology
  17. Low VL, Lim PE, Chen CD, Lim YA, Tan TK, Norma-Rashid Y, et al.
    Med Vet Entomol, 2014 Jun;28(2):157-68.
    PMID: 23848279 DOI: 10.1111/mve.12022
    The present study explored the intraspecific genetic diversity, dispersal patterns and phylogeographic relationships of Culex quinquefasciatus Say (Diptera: Culicidae) in Malaysia using reference data available in GenBank in order to reveal this species' phylogenetic relationships. A statistical parsimony network of 70 taxa aligned as 624 characters of the cytochrome c oxidase subunit I (COI) gene and 685 characters of the cytochrome c oxidase subunit II (COII) gene revealed three haplotypes (A1-A3) and four haplotypes (B1-B4), respectively. The concatenated sequences of both COI and COII genes with a total of 1309 characters revealed seven haplotypes (AB1-AB7). Analysis using tcs indicated that haplotype AB1 was the common ancestor and the most widespread haplotype in Malaysia. The genetic distance based on concatenated sequences of both COI and COII genes ranged from 0.00076 to 0.00229. Sequence alignment of Cx. quinquefasciatus from Malaysia and other countries revealed four haplotypes (AA1-AA4) by the COI gene and nine haplotypes (BB1-BB9) by the COII gene. Phylogenetic analyses demonstrated that Malaysian Cx. quinquefasciatus share the same genetic lineage as East African and Asian Cx. quinquefasciatus. This study has inferred the genetic lineages, dispersal patterns and hypothetical ancestral genotypes of Cx. quinquefasciatus.
    Matched MeSH terms: Culex/genetics*
  18. Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, et al.
    Parasit Vectors, 2020 Aug 12;13(1):414.
    PMID: 32787974 DOI: 10.1186/s13071-020-04277-x
    BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes.

    METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software.

    RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar.

    CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.

    Matched MeSH terms: Culex/microbiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links