Displaying publications 101 - 120 of 120 in total

Abstract:
Sort:
  1. Arshad N', Lin TS, Yahaya MF
    CNS Neurol Disord Drug Targets, 2020;19(2):115-126.
    PMID: 31957619 DOI: 10.2174/1871527319666200117105133
    BACKGROUND: Scientific studies support the evidence of the involvement of Metabolic Syndrome (MetS) in the progression of neurodegenerative diseases through oxidative stress. Consumption of antioxidant compounds was found to be beneficial for brain-health as it reduced the brain oxidative stress level and improved cognitive performance in animals. Stingless bee honey or locally known as Kelulut Honey (KH) has high phenolic content and is widely used as a food supplement.

    OBJECTIVES: In this study, we aimed to investigate the effects of KH on the brain of MetS-induced rats.

    METHODS: Forty male Wistar rats were divided into 5 groups; 8 weeks (C8) and 16 weeks control groups (C16), groups that received High-Carbohydrate High Fructose (HCHF) diet for 8 weeks (MS8) and 16 weeks (MS16), and a group that received HCHF for 16 weeks with KH supplemented for the last 35 days (KH).

    RESULTS: Serum fasting blood glucose decreased in the KH group compared to the MS16 group. HDL levels were significantly decreased in MetS groups compared to control groups. Open field experiments showed that KH group exhibits less anxious behavior compared to the MetS group. Probe trial of Morris water maze demonstrated significant memory retention of KH group compared to the MS16 group. Nissl staining showed a significant decrease in the pyramidal hippocampal cells in the MS16 compared to the KH group.

    CONCLUSION: KH has the ability to normalise blood glucose and reduce serum triglyceride and LDL levels in MetS rats, while behavior studies complement its effect on anxiety and memory. This shows a promising role of KH in attenuating neurodegenerative diseases through the antioxidant activity of its polyphenolic content.

    Matched MeSH terms: Bees
  2. Mohd Amiruddin Kamarulzaidi, Zulkifli Mohd. Yusoff MY, Abdul Majid Mohamed, Durriyyah Sharifah Hasan Adli
    Sains Malaysiana, 2016;45:215-220.
    As a natural anti-oxidant source, Tualang honey, produced by wild bees nesting on the Tualang tree (Koompassia excelsa) is expected to have positive influence on health, including memory. This study investigated the effect of Tualang honey on the cell count of memory formation related hippocampal pyramidal neuron and on spatial memory performance (SMP) of rats using the radial arm maze (RAM). Sprague Dawley male rats (n=24), 7-8 weeks old were divided into two groups; experimental group group force-fed 1 mL/100 g body weight with 70% honey (HG); and the control group with 0.9% saline (CG) for 12 weeks. Nissl staining technique (with cresyl violet) was employed for neurohistological analysis of the hippocampal tissue. Six randomly selected rats from each group were used for the neuronal soma counting of pyramidal cell layer CA1, CA3a and CA3c regions. Two-way ANOVA analysis showed positively significant differences between treatment and control groups for SMP comparison of working memory and reference memory components, as well as the number of pyramidal neurons. Hence, this positive effects of Tualang honey, as demonstrated behaviorally and neurohistologically, supported report that Tualang honey could improve memory and deter hippocampal morphological impairments; possibly due to its high anti-oxidant properties.
    Matched MeSH terms: Bees
  3. Ranneh Y, Mahmoud AM, Fadel A, Albujja M, Akim AM, Hamid HA, et al.
    PMID: 32957878 DOI: 10.2174/1386207323999200918152111
    BACKGROUND: Systemic acute inflammation is the hallmark of sepsis and is associated with multiple organ dysfunction.

    OBJECTIVE: This study investigated the potential of Stingless Bee Honey (SBH) to suppress lipopolysaccharide (LPS)-induced systemic acute inflammation in rats and to reveal the probable mechanism of action.

    METHODS: Rats received 4.6 and 9.2 g/kg SBH for 7 days followed by a single injection of LPS after which blood samples were taken 6h later.

    RESULTS: LPS induced liver, kidney, heart, and lung injury, were manifested by increased serum transaminases, alkaline phosphatase, creatine kinase, creatinine, and urea, along with multiple histological alterations, particularly leukocyte infiltration. Pro-inflammatory cytokines were elevated in the serum, and NF-κB p65, p38 MAPK, and HMGB-1 were significantly increased in different tissues of LPS-challenged rats. SBH prevented tissue injury, ameliorated pro-inflammatory cytokines, and suppressed NF-κB p65, p38 MAPK, and HMGB-1 in rats that had received LPS. In addition, SBH diminished reactive oxygen species (ROS) production, lipid peroxidation, and oxidative DNA damage, and enhanced glutathione and Nrf2 in LPS-treated rats.

    CONCLUSION: SBH prevents systemic acute inflammation by suppressing NF-κB, p38 MAPK, HMGB-1, oxidative stress, and tissue injury in rats. Thus, SBH may represent an effective anti-inflammatory nutraceutical, pending further mechanistic studies.

    Matched MeSH terms: Bees
  4. Se KW, Ghoshal SK, Wahab RA, Ibrahim RKR, Lani MN
    Food Res Int, 2018 03;105:453-460.
    PMID: 29433236 DOI: 10.1016/j.foodres.2017.11.012
    In this study, we propose an easy approach by combining the Fourier transform infrared and attenuated total reflectance (FTIR-ATR) spectroscopy together with chemometrics analysis for rapid detection and accurate quantification of five adulterants such as fructose, glucose, sucrose, corn syrup and cane sugar in stingless bees (Heterotrigona itama) honey harvested in Malaysia. Adulterants were classified using principal component analysis and soft independent modeling class analogy, where the first derivative of the spectra in the wavenumber range of 1180-750cm-1 was utilized. The protocol could satisfactorily discriminate the stingless bees honey samples that were adulterated with the concentrations of corn syrup above 8% (w/w) and cane sugar over 2% (w/w). Feasibility of integrating FTIR-ATR with chemometrics for precise quantification of the five adulterants was affirmed using partial least square regression (PLSR) analysis. The study found that optimal PLSR analysis achieved standard error of calibrations and standard error of predictions within an acceptable range of 0.686-1.087% and 0.581-1.489%, respectively, indicating good predictive capability. Hence, the method developed here for detecting and quantifying adulteration in H. itama honey samples is accurate and rapid, requiring only 7-8min to complete as compared to 3h for the standard method, AOAC method 998.12.
    Matched MeSH terms: Bees
  5. Chong KY, Chin NL, Yusof YA
    Food Sci Technol Int, 2017 Oct;23(7):608-622.
    PMID: 28614964 DOI: 10.1177/1082013217713331
    The effects of thermosonication on the quality of a stingless bee honey, the Kelulut, were studied using processing temperature from 45 to 90 ℃ and processing time from 30 to 120 minutes. Physicochemical properties including water activity, moisture content, color intensity, viscosity, hydroxymethylfurfural content, total phenolic content, and radical scavenging activity were determined. Thermosonication reduced the water activity and moisture content by 7.9% and 16.6%, respectively, compared to 3.5% and 6.9% for conventional heating. For thermosonicated honey, color intensity increased by 68.2%, viscosity increased by 275.0%, total phenolic content increased by 58.1%, and radical scavenging activity increased by 63.0% when compared to its raw form. The increase of hydroxymethylfurfural to 62.46 mg/kg was still within the limits of international standards. Optimized thermosonication conditions using response surface methodology were predicted at 90 ℃ for 111 minutes. Thermosonication was revealed as an effective alternative technique for honey processing.
    Matched MeSH terms: Bees
  6. Hashim KN, Chin KY, Ahmad F
    Molecules, 2023 Mar 20;28(6).
    PMID: 36985762 DOI: 10.3390/molecules28062790
    Metabolic syndrome (MetS) is composed of central obesity, hyperglycemia, dyslipidemia and hypertension that increase an individual's tendency to develop type 2 diabetes mellitus and cardiovascular diseases. Kelulut honey (KH) produced by stingless bee species has a rich phenolic profile. Recent studies have demonstrated that KH could suppress components of MetS, but its mechanisms of action are unknown. A total of 18 male Wistar rats were randomly divided into control rats (C group) (n = 6), MetS rats fed with a high carbohydrate high fat (HCHF) diet (HCHF group) (n = 6), and MetS rats fed with HCHF diet and treated with KH (HCHF + KH group) (n = 6). The HCHF + KH group received 1.0 g/kg/day KH via oral gavage from week 9 to 16 after HCHF diet initiation. Compared to the C group, the MetS group experienced a significant increase in body weight, body mass index, systolic (SBP) and diastolic blood pressure (DBP), serum triglyceride (TG) and leptin, as well as the area and perimeter of adipocyte cells at the end of the study. The MetS group also experienced a significant decrease in serum HDL levels versus the C group. KH supplementation reversed the changes in serum TG, HDL, leptin, adiponectin and corticosterone levels, SBP, DBP, as well as adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) level, area and perimeter at the end of the study. In addition, histological observations also showed that KH administration reduced fat deposition within hepatocytes, and prevented deterioration of pancreatic islet and renal glomerulus. In conclusion, KH is effective in preventing MetS by suppressing leptin, corticosterone and 11βHSD1 levels while elevating adiponectin levels.
    Matched MeSH terms: Bees
  7. Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, et al.
    Nutrients, 2023 Jun 22;15(13).
    PMID: 37447162 DOI: 10.3390/nu15132835
    Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
    Matched MeSH terms: Bees
  8. Ekeuku SO, Chin KY
    Molecules, 2021 May 25;26(11).
    PMID: 34070497 DOI: 10.3390/molecules26113156
    Chronic inflammation and oxidative stress are two major mechanisms leading to the imbalance between bone resorption and bone formation rate, and subsequently, bone loss. Thus, functional foods and dietary compounds with antioxidant and anti-inflammatory could protect skeletal health. This review aims to examine the current evidence on the skeletal protective effects of propolis, a resin produced by bees, known to possess antioxidant and anti-inflammatory activities. A literature search was performed using Pubmed, Scopus, and Web of Science to identify studies on the effects of propolis on bone health. The search string used was (i) propolis AND (ii) (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). Eighteen studies were included in the current review. The available experimental studies demonstrated that propolis could prevent bone loss due to periodontitis, dental implantitis, and diabetes in animals. Combined with synthetic and natural grafts, it could also promote fracture healing. Propolis protects bone health by inhibiting osteoclastogenesis and promoting osteoblastogenesis, partly through its antioxidant and anti-inflammatory actions. Despite the promising preclinical results, the skeletal protective effects of propolis are yet to be proven in human studies. This research gap should be bridged before nutraceuticals based on propolis with specific health claims can be developed.
    Matched MeSH terms: Bees
  9. Ranneh Y, Akim AM, Hamid HA, Khazaai H, Fadel A, Zakaria ZA, et al.
    BMC Complement Med Ther, 2021 Jan 14;21(1):30.
    PMID: 33441127 DOI: 10.1186/s12906-020-03170-5
    Inflammation is the main key role in developing chronic diseases including cancer, cardiovascular diseases, diabetes, arthritis, and neurodegenerative diseases which possess a huge challenge for treatment. With massively compelling evidence of the role played by nutritional modulation in preventing inflammation-related diseases, there is a growing interest into the search for natural functional foods with therapeutic and preventive actions. Honey, a nutritional healthy product, is produced mainly by two types of bees: honeybee and stingless bee. Since both types of honey possess distinctive phenolic and flavonoid compounds, there is recently an intensive interest in their biological and clinical actions against inflammation-mediated chronic diseases. This review shed the light specifically on the bioavailability and bioaccessibility of honey polyphenols and highlight their roles in targeting inflammatory pathways in gastrointestinal tract disorders, edema, cancer, metabolic and cardiovascular diseases and gut microbiota.
    Matched MeSH terms: Bees
  10. Mustafa MZ, Zulkifli FN, Fernandez I, Mariatulqabtiah AR, Sangu M, Nor Azfa J, et al.
    PMID: 31885664 DOI: 10.1155/2019/8258307
    This study was conducted to evaluate the effects of stingless bee honey (SBH) supplementation on memory and learning in mice. Despite many studies that show the benefits of honey on memory, reports on the nootropic effects of SBH are still lacking, and their underlying mechanism is still unclear. SBH is a honey produced by the bees in the tribe of Meliponini that exist in tropical countries. It features unique storage of honey collected in cerumen pots made of propolis. This SBH may offer a better prospect for therapeutic performance as the previous report identifies the presence of antioxidants that were greater than other honey produced by Apis sp. In this study, SBH was tested on Swiss albino mice following acute (7 days) and semichronic (35 days) supplementation. Experiments were then conducted using Morris water maze (MWM) behaviour analysis, RT-PCR for gene expression of mice striatum, and NMR for metabolomics analysis of the honey. Results indicate spatial working memory and spatial reference memory of mice were significantly improved in the honey-treated group compared with the control group. Improved memory consolidations were also observed in prolonged supplementation. Gene expression analyses of acutely treated mice demonstrated significant upregulation of BDNF and Itpr1 genes that involve in synaptic function. NMR analysis also identified phenylalanine, an essential precursor for tyrosine that plays a role at the BDNF receptor. In conclusion, SBH supplementation for seven days at 2000 mg/kg, which is equivalent to a human dose of 162 mg/kg, showed strong capabilities to improve spatial working memory. And prolonged intake up to 35 days increased spatial reference memory in the mice model. The phenylalanine in SBH may have triggered the upregulation of BDNF genes in honey-treated mice and improved their spatial memory performance.
    Matched MeSH terms: Bees
  11. Abubakar MB, Abdullah WZ, Sulaiman SA, Ang BS
    PMID: 24772179 DOI: 10.1155/2014/371730
    Propolis (a bee product) which has a long history of medicinal use by humans has attracted a great deal of research interest in the recent time; this is due to its widely reported biological activities such as antiviral, antifungal, antibacterial, anti-inflammatory, antioxidant, and anticarcinogenic properties. Crude form of propolis and its phenolic contents have both been reported to exhibit antileukaemic effects in various leukaemia cell lines. The ability of the polyphenols found in propolis to arrest cell cycle and induce apoptosis and differentiation in addition to inhibition of cell growth and proliferation makes them promising antileukaemic agents, and hence, they are believed to be a key to the antileukaemic effects of propolis in different types of leukaemia. This paper reviews the molecular bases of antileukaemic activity of both crude propolis and individual polyphenols on various leukaemia cell lines, and it indicates that propolis has the potential to be used in both treatment and prevention of leukaemia. This however needs further evaluation by in vitro, in vivo, and epidemiological studies as well as clinical trials.
    Matched MeSH terms: Bees
  12. Afroz R, Tanvir EM, Hossain MF, Gan SH, Parvez M, Aminul Islam M, et al.
    PMID: 25530774 DOI: 10.1155/2014/143782
    Honey, a supersaturated natural product of honey bees, contains complex compounds with antioxidant properties and therefore has a wide a range of applications in both traditional and modern medicine. In the present study, the protective effects of Sundarban honey from Bangladesh against acetaminophen- (APAP-) induced hepatotoxicity and nephrotoxicity in experimental rats were investigated. Adult male Wistar rats were pretreated with honey (5 g/kg) for 4 weeks, followed by the induction of hepatotoxicity and nephrotoxicity via the oral administration of a single dose of APAP (2 g/kg). Organ damage was confirmed by measuring the elevation of serum alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), total protein (TP), total bilirubin (TB), urea, creatinine, and malondialdehyde (MDA). Histopathological alterations observed in the livers and the kidneys further confirmed oxidative damage to these tissues. Animals pretreated with Sundarban honey showed significantly markedly reduced levels of all of the investigated parameters. In addition, Sundarban honey ameliorated the altered hepatic and renal morphology in APAP-treated rats. Overall, our findings indicate that Sundarban honey protects against APAP-induced acute hepatic and renal damage, which could be attributed to the honey's antioxidant properties.
    Matched MeSH terms: Bees
  13. Ahmed S, Othman NH
    Malays J Med Sci, 2013 May;20(3):6-13.
    PMID: 23966819 MyJurnal
    Tualang honey (TH) is a Malaysian multifloral jungle honey. In recent years, there has been a marked increase in the number of studies published in medical databases regarding its potential health benefits. The honey is produced by the rock bee (Apis dorsata), which builds hives on branches of tall Tualang trees located mainly in the north-western region of Peninsular Malaysia. This review collates the results of the various studies of TH that range from research on tissue culture to randomised control clinical trials. Findings thus far show that, TH has antimicrobial, anti-inflammatory, antioxidant, antimutagenic, antitumor, and antidiabetic properties, in addition to wound-healing attributes. Some of its properties are similar to the well-researched Manuka honey (New Zealand and/or Australian monofloral honey). Distinct differences include higher phenolics, flavonoids, and 5-(hydroxymethyl) furfural (HMF). Compared with Manuka honey, TH is also more effective against some gram-negative bacterial strains in burn wounds.
    Matched MeSH terms: Bees
  14. Baharudin MMA, Ngalimat MS, Mohd Shariff F, Balia Yusof ZN, Karim M, Baharum SN, et al.
    PLoS One, 2021;16(5):e0251514.
    PMID: 33974665 DOI: 10.1371/journal.pone.0251514
    Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have reached epidemic proportions globally. Therefore, there is an urgent need for a continuous supply of antibiotics to combat the problem. In this study, bacteria initially identified as species belonging to the Bacillus amyloliquefaciens operational group were re-identified based on the housekeeping gene, gyrB. Cell-free supernatants (CFS) from the strains were used for antimicrobial tests using the agar well diffusion assay against MRSA and various types of pathogenic bacteria. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and physicochemical characteristics of the CFS were determined. Based on gyrB sequence analysis, five strains (PD9, B7, PU1, BP1 and L9) were identified as Bacillus velezensis. The CFS of all B. velezensis strains showed broad inhibitory activities against Gram-negative and -positive as well as MRSA strains. Strain PD9 against MRSA ATCC 33742 was chosen for further analysis as it showed the biggest zone of inhibition (21.0 ± 0.4 mm). The MIC and MBC values obtained were 125 μl/ml. The crude antimicrobial extract showed bactericidal activity and was stable at various temperatures (40-80°C), pH (4-12), surfactants (Tween 20, Tween 80, SDS and Triton X-100) and metal ions (MgCI2, NaCI2, ZnNO3 and CuSO4) when tested. However, the crude extract was not stable when treated with proteinase K. All these properties resembled the characteristics of peptides. The antimicrobial compound from the selected strain was purified by using solvent extraction method and silica gel column chromatography. The purified compound was subjected to High Performance Liquid Chromatography which resulted in a single peak of the anti-MRSA compound being detected. The molecular weight of the anti-MRSA compound was determined by using SDS-PAGE and zymogram. The size of the purified antimicrobial peptide was approximately ~ 5 kDa. The antimicrobial peptide produced from B. velezensis strain PD9 is a promising alternative to combat the spread of MRSA infections in the future.
    Matched MeSH terms: Bees/microbiology*
  15. Ker-Woon C, Abd Ghafar N, Hui CK, Mohd Yusof YA
    BMC Cell Biol., 2014;15:19.
    PMID: 24885607 DOI: 10.1186/1471-2121-15-19
    Acacia honey is a natural product which has proven to have therapeutic effects on skin wound healing, but its potential healing effects in corneal wound healing have not been studied. This study aimed to explore the effects of Acacia honey (AH) on corneal keratocytes morphology, proliferative capacity, cell cycle, gene and protein analyses. Keratocytes from the corneal stroma of six New Zealand white rabbits were isolated and cultured until passage 1. The optimal dose of AH in the basal medium (FD) and medium containing serum (FDS) for keratocytes proliferation was identified using MTT assay. The morphological changes, gene and protein expressions of aldehyde dehydrogenase (ALDH), marker for quiescent keratocytes and vimentin, marker for fibroblasts were detected using q-RTPCR and immunocytochemistry respectively. Flowcytometry was performed to evaluate the cell cycle analysis of corneal keratocytes.
    Matched MeSH terms: Bees
  16. Zainol MI, Mohd Yusoff K, Mohd Yusof MY
    PMID: 23758747 DOI: 10.1186/1472-6882-13-129
    Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa.
    Matched MeSH terms: Bees
  17. Abd Jalil MA, Kasmuri AR, Hadi H
    Skin Pharmacol Physiol, 2017;30(2):66-75.
    PMID: 28291965 DOI: 10.1159/000458416
    BACKGROUND: The stingless bee is a natural type of bee that exists in almost every continent. The honey produced by this bee has been widely used across time and space. The distinctive feature of this honey is that it is stored naturally in the pot (cerumen), thus contributing to its beneficial properties, especially in the wound healing process.

    METHODS: In this article, several studies on stingless bee honey that pointed out the numerous therapeutic profiles of this honey in terms of its antioxidant, antimicrobial, anti-inflammatory, as well as moisturizing properties are reviewed. All of these therapeutic properties are related to wound healing properties.

    RESULTS: Antioxidant in stingless bee honey could break the chain of free radicals that cause a detrimental effect to the wounded area. Furthermore, the antimicrobial properties of stingless bee honey could overcome the bacterial contamination and thus improve the healing rate. Moreover, the anti-inflammatory attribute in this honey could protect the tissue from highly toxic inflammatory mediators. The moisturizing properties of the honey could improve wound healing by promoting angiogenesis and oxygen circulation.

    CONCLUSION: The application of honey to the wound has been widely used since ancient times. As a result, it is essential to understand the pharmacological mechanism of the honey towards the physiology of the wounded skin in order to optimize the healing rate in the future.

    Matched MeSH terms: Bees
  18. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F
    PMID: 31817937 DOI: 10.3390/ijerph16244987
    Metabolic syndrome (MetS) is a group of conditions including central obesity, hyperglycemia, dyslipidemia, and hypertension that increases the risk for cardiometabolic diseases. Kelulut honey (KH) produced by stingless honey bees has stronger antioxidant properties compared to other honey types and may be a functional food against MetS. This study aimed to determine the efficacy of KH in preventing metabolic changes in rats with MetS induced by high-carbohydrate and high-fat (HCHF) diet. Male Wistar rats were randomly assigned to the control (C), HCHF diet-induced MetS (S), and MetS supplemented with KH (K) groups. The K group was given KH (1 g/kg/day) for eight weeks. Compared to the control, the S group had significant higher omental fat mass, serum triglyceride, systolic blood pressure, diastolic blood pressures, adipocyte area, and adipocyte perimeter (p < 0.05). KH supplementation significantly prevented these MetS-induced changes at week 16 (p < 0.05). Several compounds, including 4-hydroxyphenyl acetic acid, coumaric and caffeic acids, had been detected via liquid chromatography-mass spectrometry analysis that might contribute to the reversal of these changes. The beneficial effects of KH against MetS-induced rats provide the basis for future KH research to investigate its potential use in humans and its molecular mechanisms in alleviating the disease.
    Matched MeSH terms: Bees
  19. Musa M, Wan Ibrahim WA, Mohd Marsin F, Abdul Keyon AS, Rashidi Nodeh H
    Food Chem, 2018 Nov 01;265:165-172.
    PMID: 29884368 DOI: 10.1016/j.foodchem.2018.04.020
    Graphene-magnetite composite (G-Fe3O4) was successfully synthesized and applied as adsorbent for magnetic solid phase extraction (MSPE) of two phenolic acids namely 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) from stingless bee honey prior to analysis using high performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/Vis). Several MSPE parameters affecting extraction of these two acids were optimized. Optimum MSPE conditions were 50 mg of G-Fe3O4 adsorbent, 5 min extraction time at 1600 rpm, 30 mL sample volume, sample solution pH 0.5, 200 µL methanol as desorption solvent (5 min sonication assisted) and 5% w/v NaCl. The LODs (3 S/N) calculated for 4-HB and 3,4-DHB were 0.08 and 0.14 µg/g, respectively. Good relative recoveries (72.6-110.6%) and reproducibility values (RSD 
    Matched MeSH terms: Bees
  20. Fakhlaei R, Selamat J, Razis AFA, Sukor R, Ahmad S, Amani Babadi A, et al.
    Molecules, 2021 Oct 15;26(20).
    PMID: 34684803 DOI: 10.3390/molecules26206222
    Honey is prone to be adulterated through mixing with sugars, cheap and low-quality honey, and other adulterants. Consumption of adulterated honey may cause several health issues such as weight gain, diabetes, and liver and kidney dysfunction. Therefore, studying the impact of consumption of adulterated honey on consumers is critical since there is a lack of study in this field. Hence, the aims of this paper were: (1) to determine the lethal concentration (LC50) of adulterated honey using zebrafish embryo, (2) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish, (3) to determine the effects of adulterated honey on histological changes of zebrafish, and (4) to screen the metabolites profile of adulterated honey by using zebrafish blood serum. The LC50 of Heterotrigona itama honey (acacia honey) and its sugar adulterants (light corn sugar, cane sugar, inverted sugar, and palm sugar in the proportion of 1-3% (w/w) from the total volume) was determined by the toxicological assessment of honey samples on zebrafish embryos (different exposure concentrations in 24, 48, 72, and 96 h postfertilization (hpf)). Pure H. itama honey represents the LC50 of 34.40 ± 1.84 (mg/mL) at 96 hpf, while the inverted sugar represents the lowest LC50 (5.03 ± 0.92 mg/mL) among sugar adulterants. The highest concentration (3%) of sugar adulterants were used to study the toxicology of adulterated honey using adult zebrafish in terms of acute, prolong-acute, and sub-acute tests. The results of the LD50 from the sub-acute toxicity test of pure H. itama honey was 2.33 ± 0.24 (mg/mL). The histological studies of internal organs showed a lesion in the liver, kidney, and spleen of adulterated treated-honey groups compared to the control group. Furthermore, the LC-MS/MS results revealed three endogenous metabolites in both the pure and adulterated honey treated groups, as follows: (1) S-Cysteinosuccinic acid, (2) 2,3-Diphosphoglyceric acid, and (3) Cysteinyl-Tyrosine. The results of this study demonstrated that adulterated honey caused mortality, which contributes to higher toxicity, and also suggested that the zebrafish toxicity test could be a standard method for assessing the potential toxicity of other hazardous food additives. The information gained from this research will permit an evaluation of the potential risk associated with the consumption of adulterated compared to pure honey.
    Matched MeSH terms: Bees
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links