Displaying publications 101 - 120 of 146 in total

Abstract:
Sort:
  1. Wan Othman WNN, Liew SY, Khaw KY, Murugaiyah V, Litaudon M, Awang K
    Bioorg Med Chem, 2016 09 15;24(18):4464-4469.
    PMID: 27492195 DOI: 10.1016/j.bmc.2016.07.043
    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively.
    Matched MeSH terms: Alkaloids/chemistry
  2. Chua LS, Amin NA, Neo JC, Lee TH, Lee CT, Sarmidi MR, et al.
    J Chromatogr B Analyt Technol Biomed Life Sci, 2011 Dec 15;879(32):3909-19.
    PMID: 22119436 DOI: 10.1016/j.jchromb.2011.11.002
    A number of three LC-MS/MS hybrid systems (QTof, TripleTof and QTrap) has been used to profile small metabolites (m/z 100-1000) and to detect the targeted metabolites such as quassinoids, alkaloids, triterpene and biphenylneolignans from the aqueous extracts of Eurycoma longifolia. The metabolite profiles of small molecules showed four significant clusters in the principle component analysis for the aqueous extracts of E. longifolia, which had been collected from different geographical terrains (Perak and Pahang) and processed at different extraction temperatures (35°C and 100°C). A small peptide of leucine (m/z 679) and a new hydroxyl methyl β-carboline propionic acid have been identified to differentiate E. longifolia extracts that prepared at 35°C and 100°C, respectively. From the targeted metabolites identification, it was found that 3,4ɛ-dihydroeurycomanone (quassinoids) and eurylene (squalene-type triterpene) could only be detected in the Pahang extract, whereas canthin-6-one-3N-oxide could only be detected in the Perak extract. Overall, quassinoids were present in the highest concentration, particularly eurycomanone and its derivatives compared to the other groups of metabolites. However, the concentration of canthin-6-one and β-carboline alkaloids was significantly increased when the roots of the plant samples were extracted at 100°C.
    Matched MeSH terms: Alkaloids/chemistry
  3. Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, et al.
    Molecules, 2013 Aug 15;18(8):9770-84.
    PMID: 23955322 DOI: 10.3390/molecules18089770
    Catharanthus roseus (L.) G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L.) G. Don leaves extract. Four alkaloids--vindoline I, vindolidine II, vindolicine III and vindolinine IV--were isolated and identified from the dichloromethane extract (DE) of this plant's leaves. DE and compounds I-III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL). All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II-IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B) inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H₂O₂-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL.
    Matched MeSH terms: Alkaloids/chemistry*
  4. Mahyudin NA, Blunt JW, Cole AL, Munro MH
    J Biomed Biotechnol, 2012;2012:894708.
    PMID: 22291452 DOI: 10.1155/2012/894708
    The application of an HPLC bioactivity profiling/microtiter plate technique in conjunction with microprobe NMR instrumentation and access to the AntiMarin database has led to the isolation of a new 1. In this example, 1 was isolated from a cytotoxic fraction of an extract obtained from marine-derived Streptomyces sp. cultured on Starch Casein Agar (SCA) medium. The 1D and 2D (1)H NMR and ESIMS data obtained from 20 μg of compound 1 fully defined the structure. The known 2 was also isolated and readily dereplicated using this approach.
    Matched MeSH terms: Pyrrolizidine Alkaloids/chemistry
  5. Yap WS, Gan CY, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2016 Jan 22;79(1):230-9.
    PMID: 26717050 DOI: 10.1021/acs.jnatprod.5b00992
    Eleven new indole alkaloids (1-11) comprising seven aspidofractinine and four eburnane alkaloids, were isolated from the stem-bark extract of Kopsia pauciflora occurring in Malaysian Borneo. The aspidofractinine alkaloids include a ring-contracted, an additional ring-fused, a paucidactine regioisomer, two paucidactine, and one kopsine alkaloid. The structures of several of these alkaloids were also confirmed by X-ray diffraction analyses. The bisindole alkaloids isolated, norpleiomutine and kopsoffinol, showed in vitro growth inhibitory activity against human PC-3, HCT-116, MCF-7, and A549 cells and moderate effects in reversing multidrug-resistance in vincristine-resistant human KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  6. Gan CY, Yoganathan K, Sim KS, Low YY, Lim SH, Kam TS
    Phytochemistry, 2014 Dec;108:234-42.
    PMID: 25442910 DOI: 10.1016/j.phytochem.2014.09.014
    Eleven indole alkaloids, comprising four corynanthean, two eburnane, one aspidofractinine, one secoleuconoxine, one andranginine, and two pauciflorine type alkaloids were isolated from the stem-bark and leaf extracts of Kopsia pauciflora. Their structures were determined using NMR and MS analyses. The catharinensine type alkaloid kopsirensine B and the secoleuconoxine alkaloid arboloscine A showed moderate to weak activity in reversing MDR in vincristine-resistant KB cells. The alkaloid content was markedly different compared to that of a sample from Malaysian Borneo.
    Matched MeSH terms: Indole Alkaloids/chemistry
  7. Sim DS, Chong KW, Nge CE, Low YY, Sim KS, Kam TS
    J Nat Prod, 2014 Nov 26;77(11):2504-12.
    PMID: 25333996 DOI: 10.1021/np500589u
    Seven new indole alkaloids (1-7) comprising four vobasine, two tacaman, and one corynanthe-tryptamine bisindole alkaloid were isolated from the stem-bark extract of a Malayan Tabernaemontana. Two of the new vobasine alkaloids (1, 3), as well as 16-epivobasine (15) and 16-epivobasenal (17), showed appreciable cytotoxicity toward KB cells (IC50 ca. 5 μg/mL). The structure of the known Tabernaemontana alkaloid tronoharine (8) was revised based on newly acquired NMR data, as well as X-ray diffraction analysis.
    Matched MeSH terms: Indole Alkaloids/chemistry
  8. Yap VA, Loong BJ, Ting KN, Loh SH, Yong KT, Low YY, et al.
    Phytochemistry, 2015 Jan;109:96-102.
    PMID: 25468714 DOI: 10.1016/j.phytochem.2014.10.032
    Hispidacine, an 8,4'-oxyneolignan featuring incorporation of an unusual 2-hydroxyethylamine moiety at C-7, and hispiloscine, a phenanthroindolizidine alkaloid, were isolated from the stem-bark and leaves of the Malaysian Ficus hispida Linn. Their structures were established by spectroscopic analysis. Hispidacine induced a moderate vasorelaxant activity in rat isolated aorta, while hispiloscine showed appreciable antiproliferative activities against MDA-MB-231, MCF-7, A549, HCT-116 and MRC-5 cell lines.
    Matched MeSH terms: Alkaloids/chemistry*
  9. Johari SA, Mohtar M, Mohammad SA, Sahdan R, Shaameri Z, Hamzah AS, et al.
    Biomed Res Int, 2015;2015:823829.
    PMID: 25710030 DOI: 10.1155/2015/823829
    28 new pyrrolidine types of compounds as analogues for natural polyhydroxy alkaloids of codonopsinine were evaluated for their anti-MRSA activity using MIC and MBC value determination assay against a panel of S. aureus isolates. One pyrrolidine compound, MFM 501, exhibited good inhibitory activity with MIC value of 15.6 to 31.3 μg/mL against 55 S. aureus isolates (43 MRSA and 12 MSSA isolates). The active compound also displayed MBC values between 250 and 500 μg/mL against 58 S. aureus isolates (45 MRSA and 13 MSSA isolates) implying that MFM 501 has a bacteriostatic rather than bactericidal effect against both MRSA and MSSA isolates. In addition, MFM 501 showed no apparent cytotoxicity activity towards three normal cell lines (WRL-68, Vero, and 3T3) with IC50 values of >625 µg/mL. Selectivity index (SI) of MFM 501 gave a value of >10 suggesting that MFM 501 is significant and suitable for further in vivo investigations. These results suggested that synthetically derived intermediate compounds based on natural products may play an important role in the discovery of new anti-infective agents against MRSA.
    Matched MeSH terms: Alkaloids/chemistry
  10. Lu J, Wei H, Wu J, Jamil MF, Tan ML, Adenan MI, et al.
    PLoS One, 2014;9(12):e115648.
    PMID: 25535742 DOI: 10.1371/journal.pone.0115648
    INTRODUCTION: Mitragynine is a major bioactive compound of Kratom, which is derived from the leave extracts of Mitragyna speciosa Korth or Mitragyna speciosa (M. speciosa), a medicinal plant from South East Asia used legally in many countries as stimulant with opioid-like effects for the treatment of chronic pain and opioid-withdrawal symptoms. Fatal incidents with Mitragynine have been associated with cardiac arrest. In this study, we determined the cardiotoxicity of Mitragynine and other chemical constituents isolated using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

    METHODS AND RESULTS: The rapid delayed rectifier potassium current (IKr), L-type Ca2+ current (ICa,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant IKr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed IKr in hiPSC-CMs by 67%∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression, and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine.

    CONCLUSIONS: Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of IKr in human cardiomyocytes.

    Matched MeSH terms: Secologanin Tryptamine Alkaloids/chemistry
  11. Lim SH, Low YY, Sinniah SK, Yong KT, Sim KS, Kam TS
    Phytochemistry, 2014 Feb;98:204-15.
    PMID: 24342109 DOI: 10.1016/j.phytochem.2013.11.014
    A total of seventeen alkaloids, comprising six macroline (including alstofolinine A, a macroline indole incorporating a butyrolactone ring-E), two ajmaline, one sarpagine, and eight akuammiline alkaloids, were isolated from the stem-bark and leaf extracts of the Malayan Alstonia macrophylla. The structure and relative configurations of these alkaloids were established using NMR, MS and in several instances, confirmed by X-ray diffraction analysis. Six of these alkaloids were effective in reversing multidrug-resistance (MDR) in vincristine-resistant KB cells.
    Matched MeSH terms: Indole Alkaloids/chemistry
  12. Nasrullah AA, Zahari A, Mohamad J, Awang K
    Molecules, 2013 Jul 08;18(7):8009-17.
    PMID: 23884132 DOI: 10.3390/molecules18078009
    A dichloromethane extract of the stem bark of Cryptocarya nigra showed strong in vitro inhibition of Plasmodium falciparum growth, with an IC50 value of 2.82 μg/mL. The phytochemical study of this extract has led to the isolation and characterization of four known alkaloids: (+)-N-methylisococlaurine (1), atherosperminine (2), 2-hydroxyathersperminine (3), and noratherosperminine (4). Structural elucidation of all alkaloids was accomplished by means of high field 1D- and 2D-NMR, IR, UV and LCMS spectral data. The isolated extract constituents (+)-N-methylisococlaurine (1), atherosperminine (2) and 2-hydroxy-atherosperminine (3) showed strong antiplasmodial activity, with IC50 values of 5.40, 5.80 and 0.75 μM, respectively. In addition, (+)-N-methylisocolaurine (1) and atherosperminine (2) showed high antioxidant activity in a DPPH assay with IC50 values of 29.56 ug/mL and 54.53 ug/mL respectively. Compounds 1 and 2 also both showed high antioxidant activity in the FRAP assay, with percentages of 78.54 and 70.66 respectively and in the metal chelating assay, with IC50 values of 50.08 ug/mL and 42.87 ug/mL, respectively.
    Matched MeSH terms: Alkaloids/chemistry
  13. Nagappan T, Segaran TC, Wahid ME, Ramasamy P, Vairappan CS
    Molecules, 2012 Dec 05;17(12):14449-63.
    PMID: 23519245 DOI: 10.3390/molecules171214449
    The traditional use of Murraya koenigii as Asian folk medicine prompted us to investigate its wound healing ability. Three carbazole alkaloids (mahanine (1), mahanimbicine (2), mahanimbine (3)), essential oil and ethanol extract of Murraya koenigii were investigated for their efficacy in healing subcutaneous wounds. Topical application of the three alkaloids, essential oil and crude extract on 8 mm wounds created on the dorsal skin of rats was monitored for 18 days. Wound contraction rate and epithelialization duration were calculated, while wound granulation and collagen deposition were evaluated via histological method. Wound contraction rates were obvious by day 4 for the group treated with extract (19.25%) and the group treated with mahanimbicine (2) (12.60%), while complete epithelialization was achieved on day 18 for all treatment groups. Wounds treated with mahanimbicine (2) (88.54%) and extract of M. koenigii (91.78%) showed the highest rate of collagen deposition with well-organized collagen bands, formation of fibroblasts, hair follicle buds and with reduced inflammatory cells compared to wounds treated with mahanine (1), mahanimbine (3) and essential oil. The study revealed the potential of mahanimbicine (2) and crude extract of M. koenigii in facilitation and acceleration of wound healing.
    Matched MeSH terms: Alkaloids/chemistry
  14. Mollataghi A, Coudiere E, Hadi AH, Mukhtar MR, Awang K, Litaudon M, et al.
    Fitoterapia, 2012 Mar;83(2):298-302.
    PMID: 22119096 DOI: 10.1016/j.fitote.2011.11.009
    Phytochemical investigation of Beilschmiedia alloiophylla has resulted in the isolation of one new alkaloid, 2-hydroxy-9-methoxyaporphine (1), and ten known natural products, laurotetanine (2), liriodenine (3), boldine (4), secoboldine (5), isoboldine (6), asimilobine (7), oreobeiline (8), 6-epioreobeiline (9), β-amyrone (10), and (S)-3-methoxynordomesticine (11). Chemical studies on the bark of B. kunstleri afforded compounds 2 and 4 along with one bisbenzylisoquinoline alkaloid, N-dimethylphyllocryptine (12). Structures of compounds 1-12 were elucidated on the basis of spectroscopic methods. All of these isolates were evaluated for their anti-acetylcholinesterase (AChE), anti-α-glucosidase, anti-leishmanial and anti-fungal activities. Compounds 1-12 exhibited strong to moderate bioactivities in aforementioned bioassays.
    Matched MeSH terms: Alkaloids/chemistry
  15. Gan CY, Robinson WT, Etoh T, Hayashi M, Komiyama K, Kam TS
    Org. Lett., 2009 Sep 3;11(17):3962-5.
    PMID: 19708704 DOI: 10.1021/ol9016172
    A cytotoxic bisindole alkaloid possessing an unprecedented structure constituted from the union of an eburnan half and a novel vinylquinoline alkaloid has been isolated from Leuconotis griffithii. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway to the novel quinolinic coupling partner is presented from an Aspidosperma precursor.
    Matched MeSH terms: Indole Alkaloids/chemistry
  16. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2008 Jan;71(1):53-7.
    PMID: 18078327
    Ten new indole alkaloids of the aspidofractinine type, in addition to several recently reported indole alkaloids and 20 other known alkaloids, were obtained from the leaf and stem-bark extract of the Malayan Kopsia singapurensis, viz., kopsimalines A-E (1-5), kopsinicine (6), kopsofinone (7), and kopsiloscines H-J (8-10). The structures of these alkaloids were determined using NMR and MS analysis. Kopsimalines A (1), B (2), C (3), D (4), and E (5) and kopsiloscine J (10) were found to reverse multidrug-resistance in vincristine-resistant KB cells, with 1 showing the highest potency.
    Matched MeSH terms: Indole Alkaloids/chemistry
  17. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2007 Nov;70(11):1783-9.
    PMID: 17939738
    Eleven new indole alkaloids, in addition to the previously reported rhazinal (1), and 14 other known alkaloids, were obtained from the Malayan Kopsia singapurensis, viz., kopsiloscines A-F (2-7), 16-epikopsinine (8), kopsilongine- N-oxide (9), 16-epiakuammiline (10), aspidophylline A (11), and vincophylline (12). The structures of these alkaloids were determined using NMR and MS analyses. Rhazinal (1), rhazinilam (17), and rhazinicine (18) showed appreciable cytotoxicity toward drug-sensitive as well as vincristine-resistant KB cells, while kopsiloscines A (2), B (3), and D (5) and aspidophylline A (11) were found to reverse drug-resistance in drug-resistant KB cells.
    Matched MeSH terms: Alkaloids/chemistry
  18. Hassan Z, Muzaimi M, Navaratnam V, Yusoff NH, Suhaimi FW, Vadivelu R, et al.
    Neurosci Biobehav Rev, 2013 Feb;37(2):138-51.
    PMID: 23206666 DOI: 10.1016/j.neubiorev.2012.11.012
    Kratom (or Ketum) is a psychoactive plant preparation used in Southeast Asia. It is derived from the plant Mitragyna speciosa Korth. Kratom as well as its main alkaloid, mitragynine, currently spreads around the world. Thus, addiction potential and adverse health consequences are becoming an important issue for health authorities. Here we reviewed the available evidence and identified future research needs. It was found that mitragynine and M. speciosa preparations are systematically consumed with rather well defined instrumentalization goals, e.g. to enhance tolerance for hard work or as a substitute in the self-treatment of opiate addiction. There is also evidence from experimental animal models supporting analgesic, muscle relaxant, anti-inflammatory as well as strong anorectic effects. In humans, regular consumption may escalate, lead to tolerance and may yield aversive withdrawal effects. Mitragynine and its derivatives actions in the central nervous system involve μ-opioid receptors, neuronal Ca²⁺ channels and descending monoaminergic projections. Altogether, available data currently suggest both, a therapeutic as well as an abuse potential.
    Matched MeSH terms: Alkaloids/chemistry
  19. Bringmann G, Dreyer M, Rischer H, Wolf K, Hadi HA, Brun R, et al.
    J Nat Prod, 2004 Dec;67(12):2058-62.
    PMID: 15620251
    Three new 5,1'-coupled naphthylisoquinoline alkaloids, ancistrobenomine A (1), 6-O-demethylancistrobenomine A (2), and 5'-O-demethylancistrocline (3), have been isolated from the stem bark of a botanically as yet undescribed highland liana Ancistrocladus sp., proposed to be named "A. benomensis" according to the region in Peninsular Malaysia where it has been discovered on the mountain of Gunung Benom. Two of the compounds possess an unprecedented structure with a novel hydroxymethylene group at C-3 of the fully dehydrogenated isoquinoline moiety. The structural elucidation was achieved by chemical, spectroscopic, and chiroptical methods. As typical of the so-called Ancistrocladaceae type, all of the compounds isolated bear an oxygen at C-6. Biological activities of these alkaloids against different protozoic pathogens are described.
    Matched MeSH terms: Alkaloids/chemistry
  20. Bringmann G, Dreyer M, Kopff H, Rischer H, Wohlfarth M, Hadi HA, et al.
    J Nat Prod, 2005 May;68(5):686-90.
    PMID: 15921410
    Three new fully dehydrogenated naphthylisoquinoline alkaloids, the 7,1'-coupled ent-dioncophylleine A (3a), the likewise 7,1'-coupled 5'-O-demethyl-ent-dioncophylleine A (4), and the 7,8'-linked dioncophylleine D (5), have been isolated from the leaves of the recently described Malaysian highland liana Ancistrocladusbenomensis. All of them lack an oxygen function at C-6; this so-called Dioncophyllaceae-type structural subclass had previously been found only in naphthylisoquinoline alkaloids from West and Central African plants. Moreover, compounds 3a and 4 are the first fully dehydrogenated, i.e., only axially chiral, naphthylisoquinoline alkaloids of this type that are optically active; compound 5, by contrast, is fully racemic, due to its configurationally unstable biaryl axis. The structural elucidation was achieved by spectroscopic and chiroptical methods. Biological activities of these alkaloids against different protozoan parasites are described.
    Matched MeSH terms: Alkaloids/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links