Displaying publications 101 - 120 of 525 in total

Abstract:
Sort:
  1. Athirah Othman, Johan Sohaili, Nur Sumaiyyah Supian
    MyJurnal
    This review is aimed to present an in-depth review of several methodologies on magnetic
    water treatment (MWT) that are employed as scale treatment in water pipeline and to
    critically discuss each method in order to determine the best outcome of MWT. The
    magnetically assisted water in pipeline in various applications are presented, argued and
    best variables are listed according to the performance of each MWT. The advantages and
    limitations of MWT are discussed and the main outcome from the review summarize the
    best method in MWT, especially in effectiveness of treating scale in terms of sustained
    environment benefits. Magnetic field application in water treatment has the potential to
    improve the water pipeline performance and lifetime. The application is also significant in
    controlling the growth of scale in upcoming system. Both of these benefits lead to healthier
    water treatment, increasing and maintaining the lifetime and performance of water system.
    Matched MeSH terms: Water Purification
  2. Omoregie AI, Alhassan M, Basri HF, Muda K, Campos LC, Ojuri OO, et al.
    Environ Sci Pollut Res Int, 2024 Aug;31(38):50098-50125.
    PMID: 39102140 DOI: 10.1007/s11356-024-34550-w
    Inadequate management and treatment of wastewater pose significant threats, including environmental pollution, degradation of water quality, depletion of global water resources, and detrimental effects on human well-being. Biogranulation technology has gained increasing traction for treating both domestic and industrial wastewater, garnering interest from researchers and industrial stakeholders alike. However, the literature lacks comprehensive bibliometric analyses that examine and illuminate research hotspots and trends in this field. This study aims to elucidate the global research trajectory of scientific output in biogranulation technology from 1992 to 2022. Utilizing data from the Scopus database, we conducted an extensive analysis, employing VOSviewer and the R-studio package to visualize and map connections and collaborations among authors, countries, and keywords. Our analysis revealed a total of 1703 journal articles published in English. Notably, China emerged as the leading country, Jin Rencun as the foremost author, Bioresource Technology as the dominant journal, and Environmental Science as the prominent subject area, with the Harbin Institute of Technology leading in institutional contributions. The most prominent author keyword identified through VOSviewer analysis was "aerobic granular sludge," with "sequencing batch reactor" emerging as the dominant research term. Furthermore, our examination using R Studio highlighted "wastewater treatment" and "sewage" as notable research terms within the field. These findings underscore a diverse research landscape encompassing fundamental aspects of granule formation, reactor design, and practical applications. This study offers valuable insights into biogranulation potential for efficient wastewater treatment and environmental remediation, contributing to a sustainable and cleaner future.
    Matched MeSH terms: Water Purification
  3. Li J, Shimizu K, Akasako H, Lu Z, Akiyama S, Goto M, et al.
    Bioresour Technol, 2015 Jan;175:463-72.
    PMID: 25459856 DOI: 10.1016/j.biortech.2014.10.047
    This study revealed the biotic and abiotic parameters driving the variations in microcystins (MCs) biodegradability of a practical biological treatment facility (BTF). Results showed that similar trends of seasonal variation were seen for microcystin-LR (MCLR) biodegradability of biofilms on the BTF and indigenous MCLR-degrader population, where both peaks co-occurred in October, following the peaks of natural MCLR concentration and water temperature observed in August. The lag period might be required for accumulation of MCLR-degraders and MCLR-degrading enzyme activity. The MCLR-degrader population was correlated to temperature, MCLR and chlorophyll-a concentration in water where the biofilms submerged, indicating that these abiotic and biotic parameters exerted direct and/or indirect influences on seasonal variation in MCLR-biodegradability. In comparison, no effect of other co-existing MCs on biodegradation of one MC was observed. However, proliferation of MC-degraders along biodegradation processes positively responded to total amount of MCs, suggesting that multiple MCs contributed additively to MC-degrader proliferation.
    Matched MeSH terms: Water Purification/methods*
  4. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, et al.
    Carbohydr Polym, 2014 Nov 26;113:115-30.
    PMID: 25256466 DOI: 10.1016/j.carbpol.2014.07.007
    Chitosan based adsorbents have received a lot of attention for adsorption of dyes. Various modifications of this polysaccharide have been investigated to improve the adsorption properties as well as mechanical and physical characteristics of chitosan. This review paper discusses major research topics related to chitosan and its derivatives for application in the removal of dyes from water. Modification of chitosan changes the original properties of this material so that it can be more suitable for adsorption of different types of dye. Many chitosan derivatives have been obtained through chemical and physical modifications of raw chitosan that include cross-linking, grafting and impregnation of the chitosan backbone. Better understanding of these varieties and their affinity toward different types of dye can help future research to be properly oriented to address knowledge gaps in this area. This review provides better opportunity for researchers to better explore the potential of chitosan-derived adsorbents for removal of a great variety of dyes.
    Matched MeSH terms: Water Purification*
  5. Vincent L, Michel L, Catherine C, Pauline R
    Water Sci Technol, 2014;70(5):787-94.
    PMID: 25225924 DOI: 10.2166/wst.2014.290
    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.
    Matched MeSH terms: Water Purification/economics*
  6. Al-Baldawi IA, Sheikh Abdullah SR, Abu Hasan H, Suja F, Anuar N, Mushrifah I
    J Environ Manage, 2014 Jul 1;140:152-9.
    PMID: 24762527 DOI: 10.1016/j.jenvman.2014.03.007
    This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons.
    Matched MeSH terms: Water Purification/methods
  7. Al-Baldawi IA, Sheikh Abdullah SR, Anuar N, Suja F, Idris M
    Water Sci Technol, 2013;68(10):2271-8.
    PMID: 24292478 DOI: 10.2166/wst.2013.484
    One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
    Matched MeSH terms: Water Purification*
  8. Herawan SG, Ahmad MA, Putra A, Yusof AA
    ScientificWorldJournal, 2013;2013:545948.
    PMID: 24027443 DOI: 10.1155/2013/545948
    Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC) was produced at various CO₂ flow rates in the range of 150-600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO₂ flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m²/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB) by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.
    Matched MeSH terms: Water Purification/methods
  9. Ahmed MJ, Theydan SK
    Ecotoxicol Environ Saf, 2012 Oct;84:39-45.
    PMID: 22795888 DOI: 10.1016/j.ecoenv.2012.06.019
    Adsorption capacity of an agricultural waste, palm-tree fruit stones (date stones), for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) at different temperatures was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m2/g and 475.88 mg/g, respectively. The effects of pH (2-12), adsorbent dose (0.6-0.8 g/L) and contact time (0-150 min) on the adsorptive removal process were studied. Maximum removal percentages of 89.95% and 92.11% were achieved for Ph and PNPh, respectively. Experimental equilibrium data for adsorption of both components were analyzed by the Langmuir, Freundlich and Tempkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm equation with maximum adsorption capacities of 132.37 and 161.44 mg/g for Ph and PNPh, respectively. The kinetic data were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion models, and was found to follow closely the pseudo-second order model for both components. The calculated thermodynamic parameters, namely ΔG, ΔH, and ΔS showed that adsorption of Ph and PNPh was spontaneous and endothermic under examined conditions.
    Matched MeSH terms: Water Purification*
  10. Hasan HA, Abdullah SR, Kofli NT, Kamarudin SK
    J Environ Manage, 2012 Nov 30;111:34-43.
    PMID: 22813857 DOI: 10.1016/j.jenvman.2012.06.027
    Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments. The study showed that Bacillus sp. was a more effective biosorbent than SAS. The experimental data were fitted to the Langmuir (Langmuir-1 & Langmuir-2), Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherms to obtain the characteristic parameters of each model. Mn(2+) biosorption by Bacillus sp. was found to be significantly better fitted to the Langmuir-1 isotherm than the other isotherms, while the D-R isotherm was the best fit for SAS; i.e., the χ(2) value was smaller than that for the Freundlich, Temkin, and R-P isotherms. According to the evaluation using the Langmuir-1 isotherm, the maximum biosorption capacities of Mn(2+) onto Bacillus sp. and SAS were 43.5 mg Mn(2+)/g biomass and 12.7 mg Mn(2+)/g biomass, respectively. The data fitted using the D-R isotherm showed that the Mn(2+) biosorption processes by both Bacillus sp. and SAS occurred via the chemical ion-exchange mechanism between the functional groups and Mn(2+) ion.
    Matched MeSH terms: Water Purification/methods*
  11. Al-Amri A, Salim MR, Aris A
    Water Sci Technol, 2011;64(7):1398-405.
    PMID: 22179635 DOI: 10.2166/wst.2011.421
    A study has been carried out to define the effect of drastic temperature changes on the performance of lab-scale hollow-fibre MBR in treating municipal wastewater at a flux of 10 L m(-2) h(-1) (LMH). The objectives of the study were to estimate the activated sludge properties, the removal efficiencies of COD and NH(3)-N and the membrane fouling tendency under critical conditions of drastic temperature changes (23, 33, 42 & 33 °C) and MLSS concentration ranged between 6,382 and 8,680 mg/L. The study exhibited that the biomass reduction, the low sludge settleability and the supernatant turbidity were results of temperature increase. The temperature increase led to increase in SMP carbohydrate and protein, and to decrease in EPS carbohydrate and protein. The BRE of COD dropped from 80% at 23 °C to 47% at 42 °C, while the FRE was relatively constant at about 90%. Both removal efficiencies of NH(3)-N trended from about 100% at 33 °C to less than 50% at 42 °C. TMP and BWP ascended critically with temperature increase up to 336 and 304 mbar respectively by the end of the experiment. The values of suspended solids (SS) and the turbidity in the final effluent were negligible. The DO in the mixed liquor was varying with temperature change, while the pH was within the range of 6.7-8.3.
    Matched MeSH terms: Water Purification/methods*
  12. Zainal-Abideen M, Aris A, Yusof F, Abdul-Majid Z, Selamat A, Omar SI
    Water Sci Technol, 2012;65(3):496-503.
    PMID: 22258681 DOI: 10.2166/wst.2012.561
    In this study of coagulation operation, a comparison was made between the optimum jar test values for pH, coagulant and coagulant aid obtained from traditional methods (an adjusted one-factor-at-a-time (OFAT) method) and with central composite design (the standard design of response surface methodology (RSM)). Alum (coagulant) and polymer (coagulant aid) were used to treat a water source with very low pH and high aluminium concentration at Sri-Gading water treatment plant (WTP) Malaysia. The optimum conditions for these factors were chosen when the final turbidity, pH after coagulation and residual aluminium were within 0-5 NTU, 6.5-7.5 and 0-0.20 mg/l respectively. Traditional and RSM jar tests were conducted to find their respective optimum coagulation conditions. It was observed that the optimum dose for alum obtained through the traditional method was 12 mg/l, while the value for polymer was set constant at 0.020 mg/l. Through RSM optimization, the optimum dose for alum was 7 mg/l and for polymer was 0.004 mg/l. Optimum pH for the coagulation operation obtained through traditional methods and RSM was 7.6. The final turbidity, pH after coagulation and residual aluminium recorded were all within acceptable limits. The RSM method was demonstrated to be an appropriate approach for the optimization and was validated by a further test.
    Matched MeSH terms: Water Purification/methods*
  13. Ayub KR, Zakaria NA, Abdullah R, Ramli R
    Water Sci Technol, 2010;62(8):1931-6.
    PMID: 20962410 DOI: 10.2166/wst.2010.473
    The Bio-ecological Drainage System, or BIOECODS, is an urban drainage system located at the Engineering Campus, Universiti Sains Malaysia. It consists of a constructed wetland as a part of the urban drainage system to carry storm water in a closed system. In this closed system, the constructed wetland was designed particularly for further treatment of storm water. For the purpose of studying the water balance of the constructed wetland, data collection was carried out for two years (2007 and 2009). The results show that the constructed wetland has a consistent volume of water storage compared to the outflow for both years with correlation coefficients (R(2)) of 0.99 in 2007 and 0.86 in 2009.
    Matched MeSH terms: Water Purification/methods*
  14. Ngu LH, Law PL, Wong KK, Yusof AA
    Water Sci Technol, 2010;62(5):1129-35.
    PMID: 20818055 DOI: 10.2166/wst.2010.407
    This research investigated the effects of co- and counter-current flow patterns on oil-water-solid separation efficiencies of a circular separator with inclined coalescence mediums. Oil-water-solid separations were tested at different influent concentrations and flowrates. Removal efficiencies increased as influent flowrate decreased, and their correlationship can be represented by power equations. These equations were used to predict the required flowrate, Q(ss50), for a given influent suspended solids concentration C(iss) to achieve the desired effluent suspended solids concentration, C(ess) of 50 mg/L, to meet environmental discharge requirements. The circular separator with counter-current flow was found to attend removal efficiencies relatively higher as compared to the co-current flow. As compared with co-current flow, counter-current flow Q(ss50) was approximately 1.65 times higher than co-current flow. It also recorded 13.16% higher oil removal at influent oil concentration, C(io) of 100 mg/L, and approximately 5.89% higher TSS removal at all influent flowrates. Counter-current flow's better removal performances were due to its higher coalescing area and constant interval between coalescence plate layers.
    Matched MeSH terms: Water Purification/methods*
  15. Ghafari S, Hasan M, Aroua MK
    J Biosci Bioeng, 2009 Mar;107(3):275-80.
    PMID: 19269592 DOI: 10.1016/j.jbiosc.2008.11.008
    Accumulation of nitrite intermediate in autohydrogenotrophic denitrification process has been a challenging difficulty to tackle. This study showed that further growth of "true denitrifying" bacteria and adaptation to nitrite led to a faster reduction of nitrite than nitrate as a solution to circumvent nitrite accumulation. Moreover, two effective parameters namely pH and bicarbonate dose were optimized in order to achieve a better reduction rate. Sodium bicarbonate dose ranging from 20 to 2000 mg/L and pH in the range of 6.5-8.5 was selected to be examined employing 0.2 g MLVSS/L of reacclimatized denitrifying bacteria. Eleven runs of experiments were designed considering the interactive effect of these two operative parameters. A fairly close reduction time less than 4.5 h (>22.22 mg NO2(-)-N/g MLVSS/h) was gained for the pH range between 7 and 8. The highest specific nitrite reduction rate at 25 mg NO2(-)-N/g MLVSS/h was achieved applying 1000 mg NaHCO3/L at pH 7.5 and 8. The pH was found to be the leading parameter and bicarbonate as the less effective parameter on nitrite reduction removal. Central composite design (CCD) and response surface design (RSM) were employed to develop a model as well as define the optimum condition. Using the experimental data, the developed quadratic model predicted optimum condition at pH 7.8 and sodium bicarbonate dose 1070 mg/L upon which denitrifiers managed to accomplish reduction within 3.5 h and attained the specific degradation rate of 28.57 mg NO2(-)-N/g MLVSS/h.
    Matched MeSH terms: Water Purification/methods*
  16. Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C
    J Hazard Mater, 2009 Aug 15;167(1-3):966-9.
    PMID: 19231076 DOI: 10.1016/j.jhazmat.2009.01.081
    Removal of arsenic from aqueous solution was carried out using electrocoagulation. Experiments were conducted using mild steel sacrificial anode covering wide range in operating conditions to assess the removal efficiency. The maximum arsenic removal efficiency was recorded as 94% under optimum condition. The electrocoagulation mechanism of arsenic removal has been developed to understand the effect of applied charge and electrolyte pH on arsenic removal efficiency. Further the experimental data were tested with different adsorption isotherm model to describe the electrocoagulation process.
    Matched MeSH terms: Water Purification/methods
  17. Hameed BH, Lee TW
    J Hazard Mater, 2009 May 30;164(2-3):468-72.
    PMID: 18804913 DOI: 10.1016/j.jhazmat.2008.08.018
    In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration=0.50mM and initial ferrous concentration=0.10mM for initial MG concentration of 20mg/L at 30 degrees C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.
    Matched MeSH terms: Water Purification/methods*
  18. Ujang Z, Ng KS, Tg Hamzah TH, Roger P, Ismail MR, Shahabudin SM, et al.
    Water Sci Technol, 2007;56(9):103-8.
    PMID: 18025737
    A pilot scale membrane plant was constructed and monitored in Shah Alam, Malaysia for municipal wastewater reclamation for industrial application purposes. The aim of this study was to verify its suitability under the local conditions and environmental constraints for secondary wastewater reclamation. Immersed-type crossflow microfiltration (IMF) was selected as the pretreatment step before reverse osmosis filtration. Secondary wastewater after chlorine contact tank was selected as feed water. The results indicated that the membrane system is capable of producing a filtrate meeting the requirements of both WHO drinking water standards and Malaysian Effluent Standard A. With the application of an automatic backwash process, IMF performed well in hydraulic performance with low fouling rate being achieved. The investigations showed also that chemical cleaning is still needed because of some irreversible fouling by microorganisms always remains. RO treatment with IMF pretreatment process was significantly applicable for wastewater reuse purposes and promised good hydraulic performance.
    Matched MeSH terms: Water Purification/methods*
  19. Yin CY, Aroua MK, Daud WM
    Water Sci Technol, 2007;56(9):95-101.
    PMID: 18025736
    Palm shell activated carbon was modified via surface impregnation with polyethyleneimine (PEI) to enhance removal of Cu(2+) from aqueous solution in this study. The effect of PEI modification on batch adsorption of Cu(2+) as well as the equilibrium behavior of adsorption of metal ions on activated carbon were investigated. PEI modification clearly increased the Cu(2+) adsorption capacities by 68% and 75.86% for initial solution pH of 3 and 5 respectively. The adsorption data of Cu(2+) on both virgin and PEI-modified AC for both initial solution pH of 3 and 5 fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.
    Matched MeSH terms: Water Purification/methods*
  20. Vijayaraghavan K, Ahmad D, Yazid AY
    J Hazard Mater, 2008 Jan 31;150(2):351-6.
    PMID: 17543454
    A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.
    Matched MeSH terms: Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links