Displaying publications 101 - 120 of 444 in total

Abstract:
Sort:
  1. Ariffin EY, Zakariah EI, Ruslin F, Kassim M, Yamin BM, Heng LY, et al.
    Sci Rep, 2021 Apr 12;11(1):7883.
    PMID: 33846405 DOI: 10.1038/s41598-021-86939-z
    Ferrocene or ferrocenium has been widely studied in the field of organometallic complexes because of its stable thermodynamic, kinetic and redox properties. Novel hexaferrocenium tri[hexa(isothiocyanato)iron(III)]trihydroxonium (HexaFc) complex was the product from the reaction of ferrocene, maleic acid and ammonium thiocyanate and was confirmed by elemental analysis CHNS, FTIR and single crystal X-ray crystallography. In this study, HexaFc was used for the first time as an electroactive indicator for porcine DNA biosensor. The UV-Vis DNA titrations with this compound showed hypochromism and redshift at 250 nm with increasing DNA concentrations. The binding constant (Kb) for HexaFc complex towards CT-DNA (calf-thymus DNA) was 3.1 × 104 M-1, indicated intercalator behaviour of the complex. To test the usefulness of this complex for DNA biosensor application, a porcine DNA biosensor was constructed. The recognition probes were covalently immobilised onto silica nanospheres (SiNSs) via glutaraldehyde linker on a screen-printed electrode (SPE). After intercalation with the HexaFc complex, the response of the biosensor to the complementary porcine DNA was measured using differential pulse voltammetry. The DNA biosensor demonstrated a linear response range to the complementary porcine DNA from 1 × 10-6 to 1 × 10-3 µM (R2 = 0.9642) with a limit detection of 4.83 × 10-8 µM and the response was stable up to 23 days of storage at 4 °C with 86% of its initial response. The results indicated that HexaFc complex is a feasible indicator for the DNA hybridisation without the use of a chemical label for the detection of porcine DNA.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  2. Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E
    Nanoscale Res Lett, 2013;8(1):474.
    PMID: 24225302 DOI: 10.1186/1556-276X-8-474
    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose.
    Matched MeSH terms: Metal Nanoparticles
  3. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, et al.
    Molecules, 2011 Aug 08;16(8):6667-76.
    PMID: 25134770 DOI: 10.3390/molecules16086667
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10-30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0).
    Matched MeSH terms: Metal Nanoparticles/toxicity; Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  4. Low A, Bansal V
    Biomed Imaging Interv J, 2010 01 01;6(1):e9.
    PMID: 21611068 DOI: 10.2349/biij.6.1.e9
    Many papers have been written on the synthesis of gold nanoparticles but very few included pictures of the process, and none of them used video to show the whole process of synthesis. This paper records the process of synthesis of gold nanoparticles using video clips. Every process from cleaning of glassware, an important step in the synthesis of metallic nanoparticles, to the dialysis process is shown. It also includes the preparation of aqua regia and the actual synthesis of gold nanoparticles. In some papers, the dialysis process was omitted, but in this paper, it is included to complete the whole process as it is being used for purification.
    Matched MeSH terms: Metal Nanoparticles
  5. Rani E, Mohshim SA, Ahmad MZ, Goodacre R, Alang Ahmad SA, Wong LS
    Polymers (Basel), 2019 Mar 25;11(3).
    PMID: 30960545 DOI: 10.3390/polym11030561
    There is an increasing demand for lithography methods to enable the fabrication of diagnostic devices for the biomedical and agri-food sectors. In this regard, scanning probe lithography methods have emerged as a possible approach for this purpose, as they are not only convenient, robust and accessible, but also enable the deposition of "soft" materials such as complex organic molecules and biomolecules. In this report, the use of polymer pen lithography for the fabrication of DNA oligonucleotide arrays is described, together with the application of the arrays for the sensitive and selective detection of Ganoderma boninense, a fungal pathogen of the oil palm. When used in a sandwich assay format with DNA-conjugated gold nanoparticles, this system is able to generate a visually observable result in the presence of the target DNA. This assay is able to detect as little as 30 ng of Ganoderma-derived DNA without any pre-amplification and without the need for specialist laboratory equipment or training.
    Matched MeSH terms: Metal Nanoparticles
  6. Zulkifli FH, Hussain FSJ, Zeyohannes SS, Rasad MSBA, Yusuff MM
    Mater Sci Eng C Mater Biol Appl, 2017 Oct 01;79:151-160.
    PMID: 28629002 DOI: 10.1016/j.msec.2017.05.028
    Green porous and ecofriendly scaffolds have been considered as one of the potent candidates for tissue engineering substitutes. The objective of this study is to investigate the biocompatibility of hydroxyethyl cellulose (HEC)/silver nanoparticles (AgNPs), prepared by the green synthesis method as a potential host material for skin tissue applications. The substrates which contained varied concentrations of AgNO3(0.4%-1.6%) were formed in the presence of HEC, were dissolved in a single step in water. The presence of AgNPs was confirmed visually by the change of color from colorless to dark brown, and was fabricated via freeze-drying technique. The outcomes exhibited significant porosity of >80%, moderate degradation rate, and tremendous value of water absorption up to 1163% in all samples. These scaffolds of HEC/AgNPs were further characterized by SEM, UV-Vis, ATR-FTIR, TGA, and DSC. All scaffolds possessed open interconnected pore size in the range of 50-150μm. The characteristic peaks of Ag in the UV-Vis spectra (417-421nm) revealed the formation of AgNPs in the blend composite. ATR-FTIR curve showed new existing peak, which implies the oxidation of HEC in the cellulose derivatives. The DSC thermogram showed augmentation in Tgwith increased AgNO3concentration. Preliminary studies of cytotoxicity were carried out in vitro by implementation of the hFB cells on the scaffolds. The results substantiated low toxicity of HEC/AgNPs scaffolds, thus exhibiting an ideal characteristic in skin tissue engineering applications.
    Matched MeSH terms: Metal Nanoparticles
  7. AlMatar M, Makky EA, Var I, Koksal F
    Curr Drug Deliv, 2018;15(4):470-484.
    PMID: 29219055 DOI: 10.2174/1567201815666171207163504
    BACKGROUND: Until recently, one of the main reasons for mortality has been infectious diseases, and bacteria that are drug-resistant have emerged as a result of the wide application, as well as the misuse of antibacterial medications. Having multidrug-resistance, bacteria present a great problem for the efficient management of bacterial infections and this challenge has resulted in the creation of other means of dealing with bacterial diseases. Of late, metallic nanoparticles (NPs), employed as antibacterial agents, have the potential for use against resistance to bacterial drugs.

    OBJECTIVE: The mechanisms of bacterial resistance are described in this review and this is followed by an outline of the features and uses of metallic NPs as antibiotic agents to address bacteria that are antibiotic- sensitive and resistant. Additionally, a general impression of metallic NPs as antibiofilm bactericidal agents is presented.

    CONCLUSION: Biofilms and bacterial strains that are resistant to antibiotics present a grave public health challenge and this has enhanced the need to develop new bactericidal agents. Therefore, nanomaterials are considered as a potential platform for managing bacterial infections.

    Matched MeSH terms: Metal Nanoparticles/administration & dosage*; Metal Nanoparticles/adverse effects; Metal Nanoparticles/therapeutic use*
  8. Mazlan SZ, Lee YH, Hanifah SA
    Sensors (Basel), 2017 Dec 09;17(12).
    PMID: 29232842 DOI: 10.3390/s17122859
    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.
    Matched MeSH terms: Metal Nanoparticles
  9. Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN
    Int J Nanomedicine, 2014;9:121-7.
    PMID: 24379670 DOI: 10.2147/IJN.S52306
    Development of a green chemistry process for the synthesis of silver nanoparticles has become a focus of interest. This would offer numerous benefits, including ecofriendliness and compatibility for biomedical applications. Here we report the synthesis of silver nanoparticles from the reduction of silver nitrate and an aqueous extract of the lichen Parmotrema praesorediosum as a reductant as well as a stabilizer. The physical appearance of these silver nanoparticles was characterized using ultraviolet-visible spectroscopy, electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The results show that silver nanoparticles synthesized using P. praesorediosum have an average particle size of 19 nm with a cubic structure. The antibacterial activity of the synthesized silver nanoparticles was tested against eight micro-organisms using the disk diffusion method. The results reveal that silver nanoparticles synthesized using P. praesorediosum have potential antibacterial activity against Gram-negative bacteria.
    Matched MeSH terms: Metal Nanoparticles/administration & dosage*; Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  10. Ramimoghadam D, Bagheri S, Abd Hamid SB
    Biomed Res Int, 2014;2014:205636.
    PMID: 25126547 DOI: 10.1155/2014/205636
    Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  11. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, et al.
    Molecules, 2012 Jul 16;17(7):8506-17.
    PMID: 22801364 DOI: 10.3390/molecules17078506
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  12. Shameli K, Ahmad MB, Yunus WZ, Ibrahim NA, Darroudi M
    Int J Nanomedicine, 2010;5:743-51.
    PMID: 21042420 DOI: 10.2147/IJN.S13227
    In this study, silver nanoparticles (Ag-NPs) were synthesized using the wet chemical reduction method on the external surface layer of talc mineral as a solid support. Silver nitrate and sodium borohydride were used as the silver precursor and reducing agent in talc. The talc was suspended in aqueous AgNO(3) solution. After the absorption of Ag(+) on the surface, the ions were reduced with NaBH(4). The interlamellar space limits were without many changes (d(s) = 9.34-9.19 A(º)); therefore, Ag-NPs formed on the exterior surface of talc, with d(ave) = 7.60-13.11 nm in diameter. The properties of Ag/talc nanocomposites (Ag/talc-NCs) and the diameters of the Ag-NPs prepared in this way depended on the primary AgNO(3) concentration. The prepared Ag-NPs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared. These Ag/talc-NCs may have potential applications in the chemical and biological industries.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  13. Zamiri R, Zakaria A, Ahangar HA, Darroudi M, Zamiri G, Rizwan Z, et al.
    Int J Nanomedicine, 2013;8:233-44.
    PMID: 23345971 DOI: 10.2147/IJN.S36036
    Laser ablation-based nanoparticle synthesis in solution is rapidly becoming popular, particularly for potential biomedical and life science applications. This method promises one pot synthesis and concomitant bio-functionalization, is devoid of toxic chemicals, does not require complicated apparatus, can be combined with natural stabilizers, is directly biocompatible, and has high particle size uniformity. Size control and reduction is generally determined by the laser settings; that the size and size distribution scales with laser fluence is well described. Conversely, the effect of the laser repetition rate on the final nanoparticle product in laser ablation is less well-documented, especially in the presence of stabilizers. Here, the influence of the laser repetition rate during laser ablation synthesis of silver nanoparticles in the presence of starch as a stabilizer was investigated. The increment of the repetition rate does not negatively influence the ablation efficiency, but rather shows increased productivity, causes a red-shift in the plasmon resonance peak of the silver-starch nanoparticles, an increase in mean particle size and size distribution, and a distinct lack of agglomerate formation. Optimal results were achieved at 10 Hz repetition rate, with a mean particle size of ~10 nm and a bandwidth of ~6 nm 'full width at half maximum' (FWHM). Stability measurements showed no significant changes in mean particle size or agglomeration or even flocculation. However, zeta potential measurements showed that optimal double layer charge is achieved at 30 Hz. Consequently, Ag-NP synthesis via the laser ablation synthesis in solution (LASiS) method in starch solution seems to be a trade-off between small size and narrow size distributions and inherent and long-term stability.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  14. Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E
    PMID: 26523861 DOI: 10.1080/19440049.2015.1114184
    An experimental nanosilver-coated low-density polyethylene (LDPE) food packaging was incubated with food simulants using a conventional oven and tested for migration according to European Commission Regulation No. 10/2011. The commercial LDPE films were coated using a layer-by-layer (LbL) technique and three levels of silver (Ag) precursor concentration (0.5%, 2% and 5% silver nitrate (AgNO3), respectively) were used to attach antimicrobial Ag. The experimental migration study conditions (time, temperature and food simulant) under conventional oven heating (10 days at 60°C, 2 h at 70°C, 2 h at 60°C or 10 days at 70°C) were chosen to simulate the worst-case storage period of over 6 months. In addition, migration was quantified under microwave heating. The total Ag migrant levels in the food simulants were quantified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Mean migration levels obtained by ICP-AES for oven heating were in the range 0.01-1.75 mg l(-1). Migration observed for microwave heating was found to be significantly higher when compared with oven heating for similar temperatures (100°C) and identical exposure times (2 min). In each of the packaging materials and food simulants tested, the presence of nanoparticles (NPs) was confirmed by scanning electron microscopy (SEM). On inspection of the migration observed under conventional oven heating, an important finding was the significant reduction in migration resulting from the increased Ag precursor concentration used to attach Ag on the LDPE LbL-coated films. This observation merits further investigation into the LbL coating process used, as it suggests potential for process modifications to reduce migration. In turn, any reduction in NP migration below regulatory limits could greatly support the antimicrobial silver nanoparticle (AgNP)-LDPE LbL-coated films being used as a food packaging material.
    Matched MeSH terms: Metal Nanoparticles/analysis*; Metal Nanoparticles/chemistry*
  15. Rusi, Chan PY, Majid SR
    PLoS One, 2015;10(7):e0129780.
    PMID: 26158447 DOI: 10.1371/journal.pone.0129780
    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry
  16. Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang WH, Lai CW, et al.
    Drug Metab Rev, 2020 05;52(2):299-318.
    PMID: 32150480 DOI: 10.1080/03602532.2020.1734021
    Gold Nanostars (GNS) have attracted tremendous attention toward themselves owing to their multi-branched structure and unique properties. These state of the art metallic nanoparticles possess intrinsic features like remarkable optical properties and exceptional physiochemical activities. These star-shaped gold nanoparticles can predominantly be utilized in biosensing, photothermal therapy, imaging, surface-enhanced Raman spectroscopy and target drug delivery applications due to their low toxicity and extraordinary optical features. In the current review, recent approaches in the matter of GNS in case of diagnosis, bioimaging and biomedical applications were summarized and reported. In this regard, first an overview about the structure and general properties of GNS were reported and thence detailed information regarding the diagnostic, bioimaging, photothermal therapy, and drug delivery applications of such novel nanomaterials were presented in detail. Summarized information clearly highlighting the superior capability of GNS as potential multi-functional materials for biomedical applications.
    Matched MeSH terms: Metal Nanoparticles/administration & dosage*; Metal Nanoparticles/chemistry*
  17. Sadrolhosseini AR, Krishnan G, Shafie S, Abdul Rashid S, Wadi Harun S
    Molecules, 2020 Dec 09;25(24).
    PMID: 33316885 DOI: 10.3390/molecules25245798
    This study used the carbon dots solution for the laser ablation technique to fabricate silver nanoparticles. The ablation time range was from 5 min to 20 min. Analytical methods, including Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, transmission electron microscopy, and Raman spectroscopy were used to categorize the prepared samples. The UV-visible and z-scan techniques provided optical parameters such as linear and nonlinear refractive indices in the range of 1.56759 to 1.81288 and 7.3769 × 10-10 cm2 W-1 to 9.5269 × 10-10 cm2 W-1 and the nonlinear susceptibility was measured in the range of 5.46 × 10-8 to 6.97 × 10-8 esu. The thermal effusivity of prepared samples, which were measured using the photoacoustic technique, were in the range of 0.0941 W s1/2 cm-2 K-1 to 0.8491 W s1/2 cm-2 K-1. The interaction of the prepared sample with fluoride was investigated using a Raman spectrometer. Consequently, the intensity of the Raman signal decreased with the increasing concentration of fluoride, and the detection limit is about 0.1 ppm.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  18. Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M
    Sci Rep, 2016 09 01;6:32539.
    PMID: 27581681 DOI: 10.1038/srep32539
    In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  19. Rosly NZ, Ahmad SA, Abdullah J, Yusof NA
    Sensors (Basel), 2016 Aug 25;16(9).
    PMID: 27571080 DOI: 10.3390/s16091365
    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry
  20. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    J Environ Sci (China), 2018 Oct;72:140-152.
    PMID: 30244741 DOI: 10.1016/j.jes.2017.12.022
    The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO2 had a positive effect on plant physiology, resulting in promoted growth. The results of biochemical experiments implied that ZnO, through the generation of oxidative stress, significantly reduced the chlorophyll content, carotenoids and activity of stress-controlling enzymes. On the contrary, no negative biochemical impact was observed in plants treated with TiO2. For the kinetic uptake and transport study, we designed two exposure systems in which ZnO and TiO2 were exposed to red bean seedlings individually or in a mixture approach. The results showed that in single metal oxide treatments, the uptake and transport increased with increasing exposure period from one week to three weeks. However, in the metal oxide co-exposure treatment, due to complexation and competition among the particles, the uptake and transport were remarkably decreased. This suggested that the kinetic transport pattern of the metal oxide mixtures varied compared to those of its individual constituents.
    Matched MeSH terms: Metal Nanoparticles/toxicity*; Metal Nanoparticles/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links