Displaying publications 101 - 120 of 709 in total

Abstract:
Sort:
  1. Ali D, Al-Yahya QM, Baskaradoss JK
    Int Dent J, 2023 Oct;73(5):717-723.
    PMID: 37037698 DOI: 10.1016/j.identj.2023.03.005
    OBJECTIVE: The aim of this study was to compare peri-implant clinical and radiographic status and levels of advanced glycation endproducts (AGEs) in peri-implant sulcular fluid (PISF) in waterpipe users and cigarette smokers.

    METHODS: Waterpipe users, cigarette smokers, and never smokers were included. Demographic details were collected using a questionnaire. Characteristics of implants (dimensions, jaw location, depth of placement, insertion torque, and duration in function) were recorded. Peri-implant modified plaque and gingival indices (mPI and mGI), probing depth (PD), and crestal bone loss (CBL) were recorded in all groups. Volume of PISF and levels of AGEs were determined using standard techniques. Sample-size estimation was done on data from a pilot investigation, and correlation between clinicoradiographic and immunoinflammatory parameters was assessed using logistic regression models. Probability values

    Matched MeSH terms: Inflammation
  2. Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, et al.
    Pathol Res Pract, 2024 Jan;253:155037.
    PMID: 38160482 DOI: 10.1016/j.prp.2023.155037
    Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
    Matched MeSH terms: Inflammation
  3. John DV, Sreenivas N, Deora H, Purushottam M, Debnath M, Mahadevan A, et al.
    Trop Biomed, 2023 Dec 01;40(4):406-415.
    PMID: 38308827 DOI: 10.47665/tb.40.4.005
    The pathogenesis of chronic parasitic central nervous system (CNS) infections, including granulomatous amoebic meningoencephalitis (GAE), cerebral toxoplasmosis (CT), and neurocysticercosis (NCC), is primarily due to an inflammatory host reaction to the parasite. Inflammatory cytokines produced by invading T cells, monocytes, and CNS resident cells lead to neuroinflammation which underlie the immunopathology of these infections. Immune molecules, especially cytokines, can therefore emerge as potential biomarker(s) of CNS parasitic infections. In this study, cerebral spinal fluid (CSF) samples from suspected patients with parasitic infections were screened for pathogenic free-living amoebae by culture (n=2506) and PCR (n=275). Six proinflammatory cytokines in smear and culture-negative CSF samples from patients with GAE (n = 2), NCC (n = 7), and CT (n = 23) as well as control (n = 7) patients were measured using the Multiplex Suspension assay. None of the CSF samples tested was positive for neurotropic free-living amoebae by culture and only two samples showed Acanthamoeba 18S rRNA by PCR. Of the six cytokines measured, only IL-6 and IL-8 were significantly increased in all three infection groups compared to the control group. In addition, TNFa levels were higher in the GAE and NCC groups and IL-17 in the GAE group compared to controls. The levels of IL-1b and IFNg were very low in all the infection groups and the control group. There was a correlation between CSF cellularity and increased levels of IL-6, IL-8, and TNFa in 11 patients. Thus, quantifying inflammatory cytokine levels in CSF might help with understanding the level of neuroinflammation in patients with neurotropic parasitic diseases. Further studies with clinico-microbiological correlation in the form of reduction of cytokine levels with treatment and the correlation with neurological deficits are needed.
    Matched MeSH terms: Inflammation
  4. Liang J, Ji F, Wang H, Zhu T, Rubinstein J, Worthington R, et al.
    Sci Total Environ, 2024 Feb 25;913:169525.
    PMID: 38141979 DOI: 10.1016/j.scitotenv.2023.169525
    Plastic pollution pervades both marine and terrestrial ecosystems, fragmenting over time into microplastics (MPs) and nano-plastics (NPs). These particles infiltrate organisms via ingestion, inhalation, and dermal absorption, predominantly through the trophic interactions. This review elucidated the impacts of MPs/NPs on the reproductive viability of various species. MPs/NPs lead to reduced reproduction rates, abnormal larval development and increased mortality in aquatic invertebrates. Microplastics cause hormone secretion disorders and gonadal tissue damage in fish. In addition, the fertilization rate of eggs is reduced, and the larval deformity rate and mortality rate are increased. Male mammals exposed to MPs/NPs exhibit testicular anomalies, compromised sperm health, endocrine disturbances, oxidative stress, inflammation, and granulocyte apoptosis. In female mammals, including humans, exposure culminates in ovarian and uterine deformities, endocrine imbalances, oxidative stress, inflammation, granulosa cell apoptosis, and tissue fibrogenesis. Rodent offspring exposed to MPs experience increased mortality rates, while survivors display metabolic perturbations, reproductive anomalies, and weakened immunity. These challenges are intrinsically linked to the transgenerational conveyance of MPs. The ubiquity of MPs/NPs threatens biodiversity and, crucially, jeopardizes human reproductive health. The current findings underscore the exigency for comprehensive research and proactive interventions to ameliorate the implications of these pollutants.
    Matched MeSH terms: Inflammation
  5. Halim AS, Khoo TL, Saad AZ
    Indian J Plast Surg, 2012 May;45(2):193-202.
    PMID: 23162216 DOI: 10.4103/0970-0358.101277
    Wound bed preparation has been performed for over two decades, and the concept is well accepted. The 'TIME' acronym, consisting of tissue debridement, infection or inflammation, moisture balance and edge effect, has assisted clinicians systematically in wound assessment and management. While the focus has usually been concentrated around the wound, the evolving concept of wound bed preparation promotes the treatment of the patient as a whole. This article discusses wound bed preparation and its clinical management components along with the principles of advanced wound care management at the present time. Management of tissue necrosis can be tailored according to the wound and local expertise. It ranges from simple to modern techniques like wet to dry dressing, enzymatic, biological and surgical debridement. Restoration of the bacterial balance is also an important element in managing chronic wounds that are critically colonized. Achieving a balance moist wound will hasten healing and correct biochemical imbalance by removing the excessive enzymes and growth factors. This can be achieved will multitude of dressing materials. The negative pressure wound therapy being one of the great breakthroughs. The progress and understanding on scientific basis of the wound bed preparation over the last two decades are discussed further in this article in the clinical perspectives.
    Matched MeSH terms: Inflammation
  6. Zakaria ZA, Rofiee MS, Somchit MN, Zuraini A, Sulaiman MR, Teh LK, et al.
    PMID: 21318140 DOI: 10.1155/2011/142739
    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.
    Matched MeSH terms: Inflammation
  7. Siddiqui A, Akhtar S, Shah Z, Othman I, Kumari Y
    Curr Neuropharmacol, 2021;19(6):885-895.
    PMID: 32972344 DOI: 10.2174/1570159X18666200924122732
    It is a known fact that inflammation affects several physiological processes, including the functioning of the central nervous system. Additionally, impairment of lipid mechanisms/pathways have been associated with a number of neurodegenerative disorders and Alzheimer's Disease (AD) is one of them. However, much attention has been given to the link between tau and beta- amyloid hypothesis in AD pathogenesis/prognosis. Increasing evidences suggest that biologically active lipid molecules could influence the pathophysiology of AD via a different mechanism of inflammation. This review intends to highlight the role of inflammatory responses in the context of AD with the emphasis on biochemical pathways of lipid metabolism enzyme, 5-lipoxygenase (5- LO).
    Matched MeSH terms: Inflammation
  8. Hashim YZ, Phirdaous A, Azura A
    Pharmacognosy Res, 2014 Jul;6(3):191-4.
    PMID: 25002797 DOI: 10.4103/0974-8490.132593
    Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved.
    Matched MeSH terms: Inflammation
  9. Lani R, Thariq IM, Suhaimi NS, Hassandarvish P, Abu Bakar S
    Hum Vaccin Immunother, 2024 Dec 31;20(1):2306675.
    PMID: 38263674 DOI: 10.1080/21645515.2024.2306675
    Arboviruses are a significant threat to global public health, with outbreaks occurring worldwide. Toll-like receptors (TLRs) play a crucial role in the innate immune response against these viruses by recognizing pathogen-associated molecular patterns and initiating an inflammatory response. Significantly, TLRs commonly implicated in the immune response against viral infections include TLR2, TLR4, TLR6, TLR3, TLR7, and TLR8; limiting or allowing them to replicate and spread within the host. Modulating TLRs has emerged as a promising approach to combat arbovirus infections. This review summarizes recent advances in TLR modulation as a therapeutic target in arbovirus infections. Studies have shown that the activation of TLRs can enhance the immune response against arbovirus infections, leading to increased viral clearance and protection against disease. Conversely, inhibition of TLRs can reduce the excessive inflammation and tissue damage associated with arbovirus infection. Modulating TLRs represents a potential therapeutic strategy to combat arbovirus infections.
    Matched MeSH terms: Inflammation
  10. Ellulu MS, Khaza'ai H, Abed Y, Rahmat A, Ismail P, Ranneh Y
    Inflammopharmacology, 2015 Jun;23(2-3):79-89.
    PMID: 25676565 DOI: 10.1007/s10787-015-0228-1
    The roles of Omega-3 FAs are inflammation antagonists, while Omega-6 FAs are precursors for inflammation. The plant form of Omega-3 FAs is the short-chain α-linolenic acid, and the marine forms are the long-chain fatty acids: docosahexaenoic acid and eicosapentaenoic acid. Omega-3 FAs have unlimited usages, and they are considered as omnipotent since they may benefit heart health, improve brain function, reduce cancer risks and improve people's moods. Omega-3 FAs also have several important biological effects on a range of cellular functions that may decrease the onset of heart diseases and reduce mortality among patients with coronary heart disease, possibly by stabilizing the heart's rhythm and by reducing blood clotting. Some review studies have described the beneficial roles of Omega-3 FAs in cardiovascular diseases (CVDs), cancer, diabetes, and other conditions, including inflammation. Studies of the effect of Omega-3 FAs gathered from studies in diseased and healthy population. CVDs including atherosclerosis, coronary heart diseases, hypertension, and metabolic syndrome were the major fields of investigation. In studies of obesity, as the central obesity increased, the level of adipocyte synthesis of pro-inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were increased and the level of anti-inflammatory adiponectin was decreased indicating a state of inflammation. The level of C reactive protein (CRP) synthesized from hepatocyte is increased by the influence of IL-6. CRP can be considered as a marker of systemic inflammation associated with increased risks of CVDs. In molecular studies, Omega-3 FAs have direct effects on reducing the inflammatory state by reducing IL-6, TNF-α, CRP and many other factors. While the appropriate dosage along with the administrative duration is not known, the scientific evidence-based recommendations for daily intake are not modified.
    Matched MeSH terms: Inflammation/diet therapy*; Inflammation/metabolism
  11. Kassim M, Achoui M, Mansor M, Yusoff KM
    Fitoterapia, 2010 Dec;81(8):1196-201.
    PMID: 20708657 DOI: 10.1016/j.fitote.2010.07.024
    We investigated the effects of honey and its methanol and ethyl acetate extracts on inflammation in animal models. Rats' paws were induced with carrageenan in the non-immune inflammatory and nociceptive model, and lipopolysaccharide (LPS) in the immune inflammatory model. Honey and its extracts were able to inhibit edema and pain in inflammatory tissues as well as showing potent inhibitory activities against NO and PGE(2) in both models. The decrease in edema and pain correlates with the inhibition of NO and PGE(2). Phenolic compounds have been implicated in the inhibitory activities. Honey is potentially useful in the treatment of inflammatory conditions.
    Matched MeSH terms: Inflammation/drug therapy*; Inflammation/metabolism
  12. Wong KT, Munisamy B, Ong KC, Kojima H, Noriyo N, Chua KB, et al.
    J. Neuropathol. Exp. Neurol., 2008 Feb;67(2):162-9.
    PMID: 18219253 DOI: 10.1097/nen.0b013e318163a990
    Previous neuropathologic studies of Enterovirus 71 encephalomyelitis have not investigated the anatomic distribution of inflammation and viral localization in the central nervous system (CNS) in detail. We analyzed CNS and non-CNS tissues from 7 autopsy cases from Malaysia and found CNS inflammation patterns to be distinct and stereotyped. Inflammation was most marked in spinal cord gray matter, brainstem, hypothalamus, and subthalamic and dentate nuclei; it was focal in the cerebrum, mainly in the motor cortex, and was rare in dorsal root ganglia. Inflammation was absent in the cerebellar cortex, thalamus, basal ganglia, peripheral nerves, and autonomic ganglia. The parenchymal inflammatory response consisted of perivascular cuffs, variable edema, neuronophagia, and microglial nodules. Inflammatory cells were predominantly CD68-positive macrophage/microglia, but there were a few CD8-positive lymphocytes. There were no viral inclusions; viral antigens and RNA were localized only in the somata and processes of small numbers of neurons and in phagocytic cells. There was no evidence of virus in other CNS cells, peripheral nerves, dorsal root autonomic ganglia, or non-CNS organs. The results indicate that Enterovirus 71 is neuronotropic, and that, although hematogenous spread cannot be excluded, viral spread into the CNS could be via neural pathways, likely the motor but not peripheral sensory or autonomic pathways. Viral spread within the CNS seems to involve motor and possibly other pathways.
    Matched MeSH terms: Inflammation/etiology; Inflammation/virology*
  13. Sharma JN
    Eur J Rheumatol Inflamm, 1991;11(2):30-7.
    PMID: 1365470
    Components of the kallikrein-kininogen-kinin are activated in response to noxious stimuli (chemical, physical or bacterial), which may lead to excessive release of kinins in the synovial joints that may produce inflammatory joint disease. The inflammatory changes observed in synovial tissue may be due to activation of B2 receptors. Kinins also stimulate the synthesis of other pro-inflammatory agents (PGs, LTs, histamine, EDRF, PGI2 and PAF) in the inflamed joint. B2 receptor antagonists may provide valuable agents as new analgesic drugs. Further, it is suggested that substances directed to reduce the activation of KKS may provide a pharmacological basis for the synthesis of novel anti-rheumatic or anti-inflammatory drugs.
    Matched MeSH terms: Inflammation Mediators/antagonists & inhibitors; Inflammation Mediators/metabolism
  14. A/L B Vasanth Rao VR, Tan SH, Candasamy M, Bhattamisra SK
    Diabetes Metab Syndr, 2018 11 30;13(1):754-762.
    PMID: 30641802 DOI: 10.1016/j.dsx.2018.11.054
    Diabetic nephropathy (DN) is a major cause of end-stage renal disease and affects a large number of individuals with diabetes. However, the development of specific treatments for DN has not yet been identified. Hence, this review is concisely designed to understand the molecular pathways leading to DN in order to develop suitable therapeutic strategies. Extensive literature search have been carried in regard with the pathogenesis and pathophysiology of DN, drug targets and updates on clinical trials, the consequences associated with DN and the potential biomarkers for diagnosis and prediction of DN are discussed in this review. DN is characterised by microalbuminuria and macroalbuminuria, and morphological changes such as glomerular thickening, interstitial fibrosis, formation of nodular glomerulosclerosis and decreased endothelial cell fenestration. Besides, the involvement of renin-angiotensin-aldosterone system, inflammation and genetic factors are the key pathways in the progression of DN. In regard with drug development drugs targeted to epidermal growth factor, inflammatory cytokines, ACTH receptor and TGFβ1 receptors are in pipeline for clinical trials whereas, several drugs have also failed in phase III and phase IV of clinical trials due to lack of efficacy and severe adverse effect. The research on DN is limited with respect to its pathogenesis and drug development. Thus, a more detailed understanding of the pathogenesis of DN is very essential to progress in the drug development process.
    Matched MeSH terms: Inflammation Mediators/antagonists & inhibitors; Inflammation Mediators/metabolism
  15. Wong SK, Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2019;20(12):1264-1280.
    PMID: 30961493 DOI: 10.2174/1389450120666190405172524
    Metabolic Syndrome (MetS) involves a cluster of five conditions, i.e. obesity, hyperglycaemia, hypertension, hypertriglyceridemia and low High-Density Lipoprotein (HDL) cholesterol. All components of MetS share an underlying chronic inflammatory aetiology, manifested by increased levels of pro-inflammatory cytokines. The pathogenic role of inflammation in the development of MetS suggested that toll-like receptor (TLR) activation may trigger MetS. This review summarises the supporting evidence on the interactions between MetS and TLR activation, bridged by the elevation of TLR ligands during MetS. The regulatory circuits mediated by TLR activation, which modulates signal propagation, leading to the state of chronic inflammation, are also discussed. Taken together, TLR activation could be the molecular basis in the development of MetS-induced inflammation.
    Matched MeSH terms: Inflammation/complications*; Inflammation/metabolism
  16. Paudel YN, Angelopoulou E, Akyuz E, Piperi C, Othman I, Shaikh MF
    Pharmacol Res, 2020 10;160:105172.
    PMID: 32871246 DOI: 10.1016/j.phrs.2020.105172
    Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
    Matched MeSH terms: Inflammation/complications; Inflammation/pathology
  17. Fazalul Rahiman SS, Basir R, Talib H, Tie TH, Chuah YK, Jabbarzare M, et al.
    Trop Biomed, 2013 Dec;30(4):663-80.
    PMID: 24522137 MyJurnal
    Interleukin-27 (IL-27) has a pleiotropic role either as a pro-inflammatory or anti-inflammatory cytokine in inflammatory related diseases. The role and involvement of IL-27 during malaria was investigated and the effects of modulating its release on the production of major inflammatory cytokines and the histopathological consequences in major affected organs during the infection were evaluated. Results showed that IL-27 concentration was significantly elevated throughout the infection but no positive correlation with the parasitaemia development observed. Augmentation of IL-27 significantly elevated the release of anti-inflammatory cytokine, IL-10 whereas antagonising and neutralising IL-27 produced the opposite. A significant elevation of pro-inflammatory cytokines (IFN-γ and IL-6) was also observed, both during augmentation and inhibition of IL-27. Thus, it is suggested that IL-27 exerts an anti-inflammatory activity in the Th1 type response by signalling the production of IL-10 during malaria. Histopathological examination showed sequestration of PRBC in the microvasculature of major organs in malarial mice. Other significant histopathological changes include hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in lung tissue, enlargement of the white and red pulp followed by the disappearance of germinal centre of the spleen, and tubular vacuolation of the kidney tissues. In conclusion, it is suggested that IL-27 may possibly acts as an anti-inflammatory cytokine during the infection. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential in malaria immunotherapy, in which the host may benefit from its inhibition.
    Matched MeSH terms: Inflammation/immunology*; Inflammation/pathology*
  18. Shastri MD, Allam VSRR, Shukla SD, Jha NK, Paudel KR, Peterson GM, et al.
    Life Sci, 2021 Oct 15;283:119871.
    PMID: 34352260 DOI: 10.1016/j.lfs.2021.119871
    Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.
    Matched MeSH terms: Inflammation/immunology; Inflammation/pathology
  19. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA
    J Nutr Biochem, 2021 07;93:108634.
    PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634
    The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
    Matched MeSH terms: Inflammation/diet therapy*; Inflammation/metabolism
  20. Lee NT, Ong LK, Gyawali P, Nassir CMNCM, Mustapha M, Nandurkar HH, et al.
    Biomolecules, 2021 07 06;11(7).
    PMID: 34356618 DOI: 10.3390/biom11070994
    The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood-brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.
    Matched MeSH terms: Inflammation/metabolism; Inflammation/pathology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links