RESULTS: In the erythrocyte-binding assay, binding level was determined by scoring the number of rosettes that were formed by erythrocytes surrounding transfected mammalian COS-7 cells which expressed PkDBPαII. The assay result revealed a significant difference in the binding level. The number of rosettes scored for Fya+/b+ was 1.64-fold higher than that of Fya+/b- (155.50 ± 34.32 and 94.75 ± 23.16 rosettes, respectively; t(6) = -2.935, P = 0.026).
CONCLUSIONS: The erythrocyte-binding assay provided a simple approach to quantitatively determine the binding level of PkDBPαII to the erythrocyte Duffy antigen. Using this assay, PkDBPαII was found to display higher binding to Fya+/b+ erythrocytes than to Fya+/b- erythrocytes.
METHODS: This study was conducted to determine the effects of ethyl acetate (45 L Ea), ethanol (45 L Et), and hexane (45 L H) leaf extracts of G. parvifolia on the infectivity of pseudorabies virus (PrV) in Vero cells. The antiviral effects of the extracts were determined by cytopathic effect (CPE), inhibition, attachment, and virucidal assays.
RESULTS: The 50% cytotoxicity concentration (CC50) values obtained were 237.5, 555.0, and
METHODS: In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies.
RESULTS: Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection.
CONCLUSIONS: The rVSV vectors expressing Nipah virus G or F are prime candidates for new 'emergency vaccines' to be utilized for NiV outbreak management.