Zinc oxide (ZnO) utilization in advanced oxidation process (AOP) via solar-photocatalytic process was a promising method for alternative treating wastewater containing phenol. The ZnO photocatalyst semiconductor was synthesized by sol-gel method. The morphology of the ZnO nanostructures was observed by using scanning electron microscope (SEM) and the crystallite phase of the ZnO was confirmed by x-ray diffraction (XRD). The objective of this study was to synthesis ZnO nanoparticles through a sol-gel method for application as a photocatalyst in the photodegradation of phenol under solar light irradiation. The photodegradation rate of phenol increased with the increasing of ZnO loading from 0.2 until 1.0 g. Only 2 h were required for synthesized ZnO to fully degrade the phenol. The synthesized ZnO are capable to totally degrade high initial concentration up until 45 mg L-1 within 6 h of reaction time. The photodegradation of phenol by ZnO are most favoured under the acidic condition (pH3) where the 100% removal achieved after 2 h of reaction. The mineralization of phenol was monitored through chemical oxygen demand (COD) reduction and 92.6% or removal was achieved. This study distinctly utilized natural sunlight as the sole sources of irradiation which safe, inexpensive; to initiate the photocatalyst for degradation of phenol.
The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Neem and PVA stabilized particles showed high zeta potential and dispersed homogeneously in water. The stabilization process altered the shape of the particles due to plane growth along the (002) polar direction. The stabilizers acted as capping agents and initiated the one-dimensional growth. The alkyl chain groups from PVA increased the polarity of the LLDPE/3ZT-CO/PVA and played a dominant role in the water adsorption process to activate the photocatalytic activity. This was further enhanced by the homogeneous distribution of the particles and low degree of crystallinity (20.87%) of the LLDPE composites. LLDPE/3ZT-CO/PVA exhibited the highest photodegradation (93.95%), which was better than the non-stabilized particles. Therefore, the photocatalytic activity of a polymer composite can be enhanced by grafting PVA and neem onto couple oxides. The LLDPE/3ZT-CO/PVA composite was further used to treat textile effluent. The results showed the composite was able to remove dye color by 93.95% and to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 99.99%.
Complete degradation of azo dye has always been a challenge due to the refractory nature of azo dye. An innovative hybrid system, constructed wetland-microbial fuel cell (CW-MFC) was developed for simultaneous azo dye remediation and energy recovery. This study investigated the effect of circuit connection and the influence of azo dye molecular structures on the degradation rate of azo dye and bioelectricity generation. The closed circuit system exhibited higher chemical oxygen demand (COD) removal and decolourisation efficiencies compared to the open circuit system. The wastewater treatment performances of different operating systems were ranked in the decreasing order of CW-MFC (R1 planted-closed circuit) > MFC (R2 plant-free-closed circuit) > CW (R1 planted-open circuit) > bioreactor (R2 plant-free-open circuit). The highest decolourisation rate was achieved by Acid Red 18 (AR18), 96%, followed by Acid Orange 7 (AO7), 67% and Congo Red (CR), 60%. The voltage outputs of the three azo dyes were ranked in the decreasing order of AR18 > AO7 > CR. The results disclosed that the decolourisation performance was significantly influenced by the azo dye structure and the moieties at the proximity of azo bond; the naphthol type azo dye with a lower number of azo bond and more electron-withdrawing groups could cause azo bond to be more electrophilic and more reductive for decolourisation. Moreover, the degradation pathway of AR18, AO7 and CR were elucidated based on the respective dye intermediate products identified through UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), and gas chromatograph-mass spectrometer (GC-MS) analyses. The CW-MFC system demonstrated high capability of decolouring azo dyes at the anaerobic anodic region and further mineralising dye intermediates at the aerobic cathodic region to less harmful or non-toxic products.
The present study was conducted to determine the potential of utilizing the FeSO4·7H2O waste from the titanium manufacturing industry as an effective coagulant for treating industrial effluent. In this study, the secondary rubber processing effluent (SRPE) was treated using ferrous sulfate (FeSO4·7H2O) waste from the titanium oxide manufacturing industry. The FeSO4·7H2O waste coagulation efficiency was evaluated on the elimination of ammoniacal nitrogen (NH3-N) and chemical oxygen demand (COD) from SRPE. The central composite design (CCD) of experiments was employed to design the coagulation experiments with varying coagulation time, coagulant doses, and temperature. The coagulation experiments were optimized on the optimal elimination of NH3-N and COD using response surface methodology (RSM). Results showed that coagulant doses and temperature significantly influenced NH3-N and COD elimination from SRPE. The highest NH3-N and COD removal obtained were 98.19% and 93.86%, respectively, at the optimized coagulation experimental conditions of coagulation time 70 min, coagulant doses 900 mg/L, and temperature 62 °C. The residual NH3-N and COD in treated SPRE were found below the specified industrial effluent discharge limits set by DoE, Malaysia. Additionally, the sludge generated after coagulation of SRPE contains essential plant nutrients. The present study's finding showed that FeSO4·7H2O waste generated as an industrial byproduct in a titanium oxide manufacturing industry could be utilized as an eco-friendly coagulant in treating industrial effluent.
Three different sizes of powdered activated carbon (PAC) were added in hybrid anaerobic membrane bioreactors (AnMBRs) and their performance was compared with a conventional AnMBR without PAC in treating palm oil mill effluent. Their working volume was 1 L each. From the result, AnMBRs with PAC performed better than the AnMBR without PAC. It was also found that adding a relatively smaller size of PAC (approximately 100 μm) enhanced the chemical oxygen demand removal efficiency to 78.53 ± 0.66%, while the concentration of mixed liquor suspended solid and mixed liquor volatile suspended solid were 8,050 and 6,850 mg/L, respectively. The smaller size of PAC could also enhance the biofloc formation and biogas production. In addition, the smaller particle sizes of PAC incorporated into polyethersulfone membrane resulted in higher performance of membrane fouling control and produced better quality of effluent as compared to the membrane without the addition of PAC.
The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
In this work, the feasibility of coagulation-flocculation coupled with UV-based sulfate radical oxidation process (UV/SRAOP) in the removal of chemical oxygen demand (COD) of stabilized landfill leachate (SLL) was evaluated. For coagulation-flocculation, ferric chloride (FeCl3) was used as the coagulant. The effect of initial pH of SLL and COD:FeCl3 ratio on the COD removal was evaluated. The result revealed that COD:FeCl3 ratio of 1:1.3 effectively removed 76.9% of COD at pH 6. The pre-treated SLL was then subjected to UV/SRAOP treatment. For UV/SRAOP, the sulfate radical (SR) was generated using UV-activated persulfate (UV/PS) and peroxymonosulfate (UV/PMS). The dosage of oxidant and reaction time were found to be the main parameters that influence the efficiency of COD removal. On the other hand, the effect of initial pH (3-7) and the type of oxidant (PS and PMS) was found to have no significant influence on COD removal efficiency. At optimum conditions, approximately 90.9 and 91.5% of COD was successfully removed by coagulation-flocculation coupled with UV/PS and UV/PMS system, respectively. Ecotoxicity study using zebrafish showed a reduction in toxicity of SLL from 10.1 to 1.74 toxicity unit (TU) after coagulation-flocculation. The TU remained unchanged after UV/PS treatment but slightly increased to 1.80 after UV/PMS treatment due to the presence of residual sulfate ion in the treated effluent. In general, it can be concluded that coagulation-flocculation coupled with UV/SRAOP could be a potential water treatment method for SLL treatment.
The objective of this study was to investigate several operating parameters, such as open circuit, different external resistance, pH, supporting electrolyte, and presence of aeration that might enhance the degradation rate as well as electricity generation of batik wastewater in solar photocatalytic fuel cell (PFC). The optimum degradation of batik wastewater was at pH 9 with external resistor 250 Ω. It was observed that open circuit of PFC showed only 17.2 ± 7.5% of removal efficiency, meanwhile the degradation rate of batik wastewater was enhanced to 31.9 ± 15.0% for closed circuit with external resistor 250 Ω. The decolorization of batik wastewater in the absence of photocatalyst due to the absorption of light irradiation by dye molecules and this process was known as photolysis. The degradation of batik wastewater increased as the external resistor value decreased. In addition, the degradation rate of batik wastewater also increased at pH 9 which was 74.4 ± 34.9% and at pH 3, its degradation rate was reduced to 19.4 ± 8.7%. The presence of aeration and sodium chloride as supporting electrolyte in batik wastewater also affected its degradation and electricity generation. The maximum absorbance of wavelength (λmax) of batik wastewater at 535 nm and chemical oxygen demand gradually decreased as increased in irradiation time; however, batik wastewater required prolonged irradiation time to fully degrade and mineralize in PFC system.
In this study, the treatment of poultry slaughterhouse wastewater (PSW) was evaluated using two new down-flow high-rate anaerobic bioreactor systems (HRABS), including the down-flow expanded granular bed reactor (DEGBR) and the static granular bed reactor (SGBR). These two bioreactors have demonstrated a good performance for the treatment of PSW with removal percentages of the biochemical oxygen demand (BOD5), the chemical oxygen demand (COD), and fats, oil, and grease (FOG) exceeding 95% during peak performance days. This performance of down-flow HRABS appears as a breakthrough in the field of anaerobic treatment of medium to high-strength wastewater because down-flow anaerobic bioreactors have been neglected for the high-rate anaerobic treatment of such wastewater due to the success of up-flow anaerobic reactors such as the UASB and the EGSB as a result of the granulation of a consortium of anaerobic bacteria required for efficient anaerobic digestion and biogas production. Hence, to promote the recourse to such technologies and provide further explanation to their performance, this study approached the kinetic analysis of these two down-flow HRABS using the modified Stover-Kincannon and the Grau second-order multi-component substrate models. From a comparison between the two models investigated, the modified Stover-Kincannon model provided the best prediction for the concentration of the substrate in the effluent from the two HRABS. This analysis led to the determination of the kinetic parameters of the two models that can be used for the design of the two HRABS and the prediction of the performance of the SGBR and DEGBR. The kinetic parameters determined using the Modified Stover-Kincannon were Umax = 40.5 gCOD/L.day and KB = 47.3 gCOD/L.day for the DEGBR and Umax = 33.6 gCOD/L.day and KB = 44.9 gCOD/L.day for the SGBR; while, using the Grau second-order model, the kinetic models determined were a = 0.058 and b = 1.112 for the DEGBR and a = 0.135 and b = 1.33 for the SGBR.
Agro-industrial biorefinery effluent (AIBW) is considered a highly polluting source responsible for environmental contamination. It contains high loads of chemical oxygen demand (COD), and phenol, with several other organic and inorganic constituents. Thus, an economic treatment approach is required for the sustainable discharge of the effluent. The long-term process performance, contaminant removal and microbial response of AIBW to rice straw-based biochar (RSB) and biochar-based geopolymer nanocomposite (BGC) as biosorbents in an activated sludge process were investigated. The adsorbents operated in an extended aeration system with a varied hydraulic retention time of between 0.5 and 1.5 d and an AIBW concentration of 40-100% for COD and phenol removal under standard conditions. Response surface methodology was utilised to optimize the process variables of the bioreactor system. Process results indicated a significant reduction of COD (79.51%, 98.01%) and phenol (61.94%, 74.44%) for BEAS and GEAS bioreactors respectively, at 1 d HRT and AIBW of 70%. Kinetic model analysis indicated that the Stover-Kincannon model best describes the system functionality, while the Grau model was better in predicting substrate removal rate and both with a precision of between R2 (0.9008-0.9988). Microbial communities examined indicated the abundance of genera, following the biosorbent addition, while RSB and BGC had no negative effect on the bioreactor's performance and bacterial community structure of biomass. Proteobacteria and Bacteroidetes were abundant in BEAS. While the GEAS achieved higher COD and phenol removal due to high Nitrosomonas, Nitrospira, Comamonas, Methanomethylovorans and Acinetobacter abundance in the activated sludge. Thus, this study demonstrated that the combination of biosorption and activated sludge processes could be promising, highly efficient, and most economical for AIBW treatment, without jeopardising the elimination of pollutants or the development of microbial communities.
Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation, sedimentation, flotation, and electrochemical oxidation processes. Extensive research efforts implementing EC technology have been executed over the last decade to treat chemical oxygen demand (COD)-rich industrial wastewaters with the aim to protect freshwater streams (e.g., rivers, lakes) from pollution. A comprehensive review of the available recent literature utilizing EC to treat wastewater with high COD levels is presented. In addition, recommendations are provided for future studies to improve the EC technology and broaden its range of application. This review paper introduces some technologies which are often adopted for industrial wastewater treatment. Then, the EC process is compared with those techniques as a treatment for COD-rich wastewater. The EC process is considered as the most privileged technology by different research groups owing to its ability to deal with abundant volumes of wastewater. After, the application of EC as a single and combined treatment for COD-rich wastewaters is thoroughly reviewed. Finally, this review attempts to highlight the potentials and limitations of EC. Related to the EC process in batch operation mode, the best operational conditions are found at 10 V and 60 min of voltage and reaction time, respectively. These last values guarantee high COD removal efficiencies of > 90%. This review also concludes that considerably large operation costs of the EC process appears to be the serious drawback and renders it as an unfeasible approach for handling of COD rich wastewaters. In the end, this review has attempted to highlights the potential and limitation of EC and suggests that vast notably research in the field of continuous flow EC system is essential to introduce this technology as a convincing wastewater technology.
The Kereh River in Penang, Malaysia, has faced severe pollution for over 40 years due to untreated wastewater from swine farms in Kampung Selamat, discharged via stormwater drains. Despite official claims that all 77 swine farms treat their wastewater to meet regulatory standards, local non-governmental organizations and villagers have challenged this, though their concerns lack scientific backing. This study evaluates the river's water quality by analyzing samples from upstream (US), midstream (MS), and downstream (DS), and from Parit Cina-Parit Besar, a conduit for untreated swine wastewater. Fourteen parameters were measured against Malaysia's National Water Quality Standards (NWQS). Significant differences were found in six parameters: ammonium nitrogen (AN), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), total suspended solids (TSS), and oil and grease (OG). While Dunn's post hoc pairwise comparison showed no significant differences among river segments, mean values indicated increased pollution downstream, particularly after the convergence with untreated swine wastewater. River classification worsened, with water quality index dropping from 69.88 ± 11.37 score (Class III) US to 38.49 ± 12.74 and 50.44 ± 3.14 scores (Class IV) MS and downstream, respectively. A significant positive correlation between E. coli and AN (r = 0.71, p oxygen levels and high organic matter and nutrient concentrations, especially MS and downstream, highlighting substantial ecological and public health risks. Effective enforcement of waste treatment regulations and enhanced monitoring are crucial for mitigating pollution and restoring the river's ecosystem. Collaboration between authorities and pig farmers is essential to improve water quality and maintain the river's ecological balance. PRACTITIONER POINTS: Severe Kereh River pollution: Untreated swine wastewater from Kampung Selamat pig farms, primarily via Parit Cina-Parit Besar, has degraded the river for over 40 years. Regulatory non-compliance: Despite official claims, untreated swine wastewater continues to pollute the river, challenging regulatory standards. Significant pollution indicators: Elevated levels of AN, BOD, COD, DO, TSS, OG, and E. coli signal severe pollution midstream and downstream. Water quality index drop: WQI scores classify midstream and downstream sections as polluted, indicating worsening conditions downstream. Urgent need for action: Enforcing regulations, improving wastewater treatment, and relocating pig farms are crucial for restoring the Kereh River.
The degradation of (RS)-MCPP was investigated in an anaerobic membrane bioreactor (AnMBR) using nitrate as an available electron acceptor under different COD/NO(3)(-)-N ratios. Results showed high soluble COD removal efficiency (80-93%) when the reactor was operated at high COD/NO(3)(-)-N ratios. However, the COD removal started to decline (average 15%) at high nitrate concentrations coinciding with a drop in nitrate removal efficiency to 37%, suggesting that the denitrification activity dropped and affected the AnMBR performance when nitrate was the predominant electron acceptor. Additionally, the removal efficiency of (RS)-MCPP increased from 2% to 47% with reducing COD/NO(3)(-)-N ratios, whilst the (RS)-MCPP specific utilisation rate (SUR) was inversely proportional to the COD/NO(3)(-)-N ratio, suggesting that a lower COD/NO(3)(-)-N ratios had a positive influence on the (RS)-MCPP SUR. Although nitrate had a major impact on methane production rates, the methane composition was stable (approximately 80%) for COD/NO(3)(-)-N ratios of 23 or more.
The present work aimed to develop a novel composite material made up of activated cow bone powder (CBP) as a starting material for reducing chemical oxygen demand (COD) and ammonia-nitrogen (NH3N) from palm oil mill effluent (POME). The optimization of the reduction efficiency was investigated using response surface methodology (RSM). Six independent variables used in the optimization experiments include pH (4-10), speed (0.27-9.66 rcf), contact time (2-24 h), particle size (1-4.35 mm), dilution factor (100-500) and adsorbent dosage (65-125 g/L). The chemical functional groups were determined using Fourier transform irradiation (FTIR). The elemental composition were detected using SEM-EDX, while thermal decomposition was investigated using thermo gravimetric analysis (TGA) in order to determine the effects of carbonization temperature on the adsorbent. The results revealed that the optimal reduction of COD and NH3N from raw POME was observed at pH 10, 50 rpm, within 2 h and 3 mm of particle size as well as at dilution factor of 500 and 125 g L-1 of adsorbent dosage, the observed and predicted reduction were 89.60 vs. 85.01 and 75.61 vs. 74.04%, respectively for COD and NH3N. The main functional groups in the adsorbent were OH, NH, CO, CC, COC, COH, and CH. The SEM-EDX analysis revealed that the CBP-composite has a smooth surface with high contents of carbon. The activated CBP has very stable temperature profile with no significant weight loss (9.85%). In conclusion, the CBP-composite investigated here has characteristics high potential for the remediation of COD and NH3N from raw POME.
Surface and ground water resources are highly sensitive aquatic systems to contaminants due to their accessibility to multiple-point and non-point sources of pollutions. Determination of water quality variables using mathematical models instead of laboratory experiments can have venerable significance in term of the environmental prospective. In this research, application of a new developed hybrid response surface method (HRSM) which is a modified model of the existing response surface model (RSM) is proposed for the first time to predict biochemical oxygen demand (BOD) and dissolved oxygen (DO) in Euphrates River, Iraq. The model was constructed using various physical and chemical variables including water temperature (T), turbidity, power of hydrogen (pH), electrical conductivity (EC), alkalinity, calcium (Ca), chemical oxygen demand (COD), sulfate (SO4), total dissolved solids (TDS), and total suspended solids (TSS) as input attributes. The monthly water quality sampling data for the period 2004-2013 was considered for structuring the input-output pattern required for the development of the models. An advance analysis was conducted to comprehend the correlation between the predictors and predictand. The prediction performances of HRSM were compared with that of support vector regression (SVR) model which is one of the most predominate applied machine learning approaches of the state-of-the-art for water quality prediction. The results indicated a very optimistic modeling accuracy of the proposed HRSM model to predict BOD and DO. Furthermore, the results showed a robust alternative mathematical model for determining water quality particularly in a data scarce region like Iraq.
A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures.
This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.
This study aims at developing a novel effluent removal management tool for septic sludge treatment plants (SSTP) using a clonal selection algorithm (CSA). The proposed CSA articulates the idea of utilizing an artificial immune system (AIS) to identify the behaviour of the SSTP, that is, using a sequence batch reactor (SBR) technology for treatment processes. The novelty of this study is the development of a predictive SSTP model for effluent discharge adopting the human immune system. Septic sludge from the individual septic tanks and package plants will be desuldged and treated in SSTP before discharging the wastewater into a waterway. The Borneo Island of Sarawak is selected as the case study. Currently, there are only two SSTPs in Sarawak, namely the Matang SSTP and the Sibu SSTP, and they are both using SBR technology. Monthly effluent discharges from 2007 to 2011 in the Matang SSTP are used in this study. Cross-validation is performed using data from the Sibu SSTP from April 2011 to July 2012. Both chemical oxygen demand (COD) and total suspended solids (TSS) in the effluent were analysed in this study. The model was validated and tested before forecasting the future effluent performance. The CSA-based SSTP model was simulated using MATLAB 7.10. The root mean square error (RMSE), mean absolute percentage error (MAPE), and correction coefficient (R) were used as performance indexes. In this study, it was found that the proposed prediction model was successful up to 84 months for the COD and 109 months for the TSS. In conclusion, the proposed CSA-based SSTP prediction model is indeed beneficial as an engineering tool to forecast the long-run performance of the SSTP and in turn, prevents infringement of future environmental balance in other towns in Sarawak.
In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.
The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH3-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m(3) ozone, 1g/1g COD0/S2O8(2-) ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH3-N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O3/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S2O8(2-) only, to evaluate its effectiveness. The combined method (i.e., O3/S2O8(2-)) achieved higher removal efficiencies for COD, color, and NH3-N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.