METHODS: A descriptive cross-sectional study was conducted on hospitalised COVID-19 patients from April 2021 to June 2021 in a tertiary care centre. Ethical approval was taken from the Institutional Review Committee (Reference number: 2078/79/05). The hospital data were collected in the proforma by reviewing the patient's medical records during the study period of 2 months. Convenience sampling was used. Point estimate and 95% Confidence Interval were calculated.
RESULTS: Among 106 hospitalised COVID-19 patients, the prevalence of antibiotic use was 104 (98.11%) (95.52-100, 95% Confidence Interval). About 74 (71.15%) of patients received multiple antibiotics. The most common classes of antibiotics used were cephalosporins, seen in 85 (81.73%) and macrolides, seen in 57 (54.81%) patients.
CONCLUSIONS: The prevalence of antibiotic use among hospitalised COVID-19 patients was found to be higher when compared to other studies conducted in similar settings.
KEYWORDS: antibiotics; bacterial infection; co-infection; COVID-19.
METHODS: B. subtilis was exposed to 5 to 150 μg/mL of ZnO NPs for 24 h. The parameters employed to evaluate the antimicrobial potential of ZnO NPs were the growth inhibitory effect on B. subtilis, the surface interaction of ZnO NPs on the bacterial cell wall, and also the morphological alterations in B. subtilis induced by ZnO NPs.
RESULTS: The results demonstrated a significant (p <0.05) inhibition of ZnO NPs on B. subtilis growth and it was in a dose-dependent manner for all the tested concentrations of ZnO NPs from 5 to 150 μg/mL at 24 h. Fourier transformed infrared (FTIR) spectrum confirmed the involvement of polysaccharides and polypeptides of bacterial cell wall in surface binding of ZnO NPs on bacteria. The scanning electron microscopy (SEM) was used to visualize the morphological changes, B. subtilis illustrated several surface alterations such as distortion of cell membrane, roughening of cell surface, aggregation and bending of cells, as well as, the cell rupture upon interacting with ZnO NPs for 24 h.
CONCLUSION: The results indicated the potential of ZnO NPs to be used as an antibacterial agent against B. subtilis. The findings of the present study might bring insights to incorporate ZnO NPs as an antibacterial agent in the topical applications against the infections caused by B. subtilis.
DESIGN: The LAB strains isolated from Malaysian fermented foods, Lactobacillus brevis FT 6 and Lactobacillus plantarum FT 12, were assessed for their antimicrobial properties against Porphyromonas gingivalis ATCC 33277 via disc diffusion assay. Anti-biofilm properties were determined by treating the overnight P. gingivalis ATCC 33277 biofilm with different concentrations of LAB cell-free supernatant (LAB CFS). Quantification of biofilm was carried out by measuring the optical density of stained biofilm. The ability of L. brevis FT 6 and L. plantarum FT 12 to tolerate salivary amylase was also investigated. Acid production with different sugars was carried out by pH measurement and screening for potential antimicrobial organic acid by disc diffusion assay of neutralised probiotics CFS samples. In this study, L. rhamnosus ATCC 7469, a commercial strain was used to compare the efficacy of the isolated strain with the commercial strain.
RESULTS: Lactobacillus brevis FT 6 and L. plantarum FT 12 possess antimicrobial activity against P. gingivalis with inhibition diameters of more than 10 mm, and the results were comparable with L. rhamnosus ATCC 7469. The MIC and MBC assay results for all tested strains were recorded to be 25 µl/µl concentration. All LAB CFS reduced biofilm formation proportionally to the CFS concentration and tolerated salivary amylase with more than 50% viability. Overnight cultures of all lactic acid bacteria strains showed a pH reduction and neutralised CFS of all lactic acid bacteria strains did not show any inhibition towards P. gingivalis.
CONCLUSIONS: These results indicate that the isolated probiotics have the potential as probiotics to be used as a supportive oral health treatment, especially against a periodontal pathogen, P. gingivalis.