AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.
MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.
RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).
CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.
AIM: To evaluate the fracture resistance and failure pattern of three different cavity designs restored with monolithic zirconia.
MATERIALS AND METHODS: Human maxillary premolars atraumatically extracted for orthodontic reasons were chosen. A total of 40 teeth were selected and divided into four groups (n=10). Group I-Sound teeth (control with no preparation). Group II-MOD Inlay, Group III-Partial Onlay, Group IV-Complete Onlay. Restorations were fabricated with monolithic partially sintered zirconia CAD (SAGEMAX- NexxZr). All the 30 samples were cemented using Multilink Automix (Ivoclar) and subjected to fracture resistance testing using Universal Testing Machine (UTM) (Instron) with a steel ball of 3.5 mm diameter at crosshead speed of 0.5 mm/minute. Stereomicroscope was used to evaluate the modes of failure of the fractured specimen. Fracture resistance was tested using parametric one way ANOVA test, unpaired t-test and Tukey test. Fracture patterns were assessed using non-parametric Chi-square test.
RESULTS: Group IV (Complete Onlay) presented highest fracture resistance and showed statistical significant difference. Group II (MOD Inlay) and Group III (Partial Onlay) showed significantly lower values than the Group I (Sound teeth). However, Groups I, II and III presented no significant difference from each other. Coming to the modes of failure, Group II (MOD Inlay) and Group III (Partial Onlay) presented mixed type of failures; Group IV (Complete Onlay) demonstrated 70% Type I failures.
CONCLUSION: Of the three cavity designs evaluated, Complete Onlay had shown a significant increase in the fracture resistance than the Sound teeth.
Methods: Pretreatment cephalograph of 209 orthodontic patients comprised of 92 males and 117 females were selected from orthodontic archives. Radiographs were traced for ANB, Wits appraisal, Beta angle, W angle and Yen angle measurements. Patients were divided into three skeletal classes i.e. class I, II and III based on measurements and incisor classification and profile recorded from their files. ANOVA was applied to check the validity of performed analyses and Cramer's correlation was performed to find out the correlation between analyses and skeletal classes.
Results: All performed analyses showed statistically significant difference in the values for all three skeletal classes p