EXPERIMENTS: Zeta potentials of small air bubbles and bunker oil drops dispersed in aqueous solutions of n-methylimidazolium chloride ionic liquids (n=0, 2, 3, 6, 8, 10, 12) of concentrations ranging from 1000PPM to 8000PPM, as were interfacial tensions of these solutions with bunker oil (180cst) and contact angles made by air bubbles at interfaces between these solutions and thin layers of bunker oil on flat solid surfaces were investigated. Finally, interparticle forces analysis using the Derjaguin-Landau, Verwey-Overbeek (DLVO) theory is also included.
FINDINGS: Analysis using the DLVO theory showed attractive forces between the oil particles and micro-bubbles are significantly more prevalent in short CCLs solutions of imidazolium-based ILs in low concentrations, namely [C0mim][Cl] and [C2mim][Cl] at a maximum zeta potential difference of 75.3mV. The results from CA measurements follows similarly whereby low concentrations of ILs with short CCLs were in favor for the bubble-particle attachment process with angles ranging between 93.95° for [C0mim][Cl] and 97.28° for [C2mim][Cl]. IFT which is important in reducing coalescence for the preferential BPA process to occur in flotation decreases with an increase of CCL and concentration of IL.
EXPERIMENTS: Graphene-philic surfactants, bearing two and three chains phenylated at their chain termini, were synthesized and characterized by proton nuclear magnetic resonance (1H NMR) spectroscopy. These were used to formulate and stabilize dispersion of GNPs in natural rubber latex matrices, and the properties of systems comprising the new phenyl-surfactants were compared with commercially available surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). Raman spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM) were used to study structural properties of the materials. Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between surfactant architecture and nanocomposite properties. Small-angle neutron scattering (SANS) was used to study self-assembly structure of surfactants.
FINDINGS: Of these different surfactants, the tri-chain aromatic surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly graphene-compatible (nanocomposite electrical conductivity = 2.22 × 10-5 S cm-1), demonstrating enhanced electrical conductivity over nine orders of magnitude higher than neat natural rubber-latex matrix (1.51 × 10-14 S cm-1). Varying the number of aromatic moieties in the surfactants appears to cause significant differences to the final properties of the nanocomposites.
EXPERIMENTS: The solubility and electrolytic conductivity for binary and ternary surfactant mixtures of MES with anionic sodium alpha olefin sulfonate (AOS) and sodium lauryl ether sulfate with two ethylene oxide groups (SLES-2EO) at 5 °C during long-term storage were measured. Phase diagrams were established; a general phase separation theoretical model for their explanation was developed and checked experimentally.
FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general phase separation model for ionic surfactant mixtures is convenient for construction of such complex phase diagrams and provides information on the concentrations of all components of the complex solution and on the micellar electrostatic potential. The obtained maximal MES mole fraction of transparent micellar solutions could be of interest to increase the range of applicability of MES-surfactants.