METHODS: The N. oleracea fractions were obtained using solid phase extraction (SPE). A metabolomics approach that coupled the use of proton nuclear magnetic resonance (1H NMR) with multivariate data analysis (MVDA) was applied to distinguish the metabolite variations among the N. oleracea fractions, as well as to assess the correlation between metabolite variation and the studied bioactivities (DPPH free radical scavenging and α-glucosidase inhibitory activities). The bioactive fractions were then subjected to ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis to profile and identify the potential bioactive constituents.
RESULTS: The principal component analysis (PCA) discriminated EF and MF from the other fractions with the higher distributions of phenolics. Partial least squares (PLS) analysis revealed a strong correlation between the phenolics and the studied bioactivities in the EF and the MF. The UHPLC-MS/MS profiling of EF and MF had tentatively identified the phenolics present. Together with some non-phenolic metabolites, a total of 37 metabolites were tentatively assigned.
CONCLUSIONS: The findings of this work supported that N. oleracea is a rich source of phenolics that can be potential antioxidants and α-glucosidase inhibitors for the management of diabetes. To our knowledge, this study is the first report on the metabolite-bioactivity correlation and UHPLC-MS/MS analysis of N. oleracea fractions.
AIM OF THIS STUDY: This study aimed to investigate the potential toxicity effects of A. hierochuntica in pregnant Sprague-Dawley rats and their developing foetuses.
MATERIALS AND METHODS: Experiments were conducted in accordance to the Organisation for Economic Co-operation and Development guideline 414. Animals were randomly divided into four groups (n = 10 females per group): negative control (received the vehicle only), experimental animals received 250, 500, and 1000 mg/kg A. hierochuntica aqueous extracts (AHAE), respectively. Treatment was administered daily by oral gavage from gestational day (GD) 6-20, and caesarian section performed on GD21.
RESULTS: There were significant reduction in the corrected maternal weight gain of dams and body weight of foetuses in the lowest and highest dose of AHAE-treated animals compared to the control. These findings were associated with the increase in anogenital distance index and multiple congenital anomalies observed in some of the offspring. On the other hand, rats treated with 500 mg/kg showed higher embryonic survival rate with absence of significant treatment-related effect.
CONCLUSION: Findings showed that highest and lowest doses of AHAE have prenatal toxicity effects in SD rats. Therefore, AHAE is potentially harmful to the developing foetuses especially when consumed during the period of implantation and organogenesis. As for the rats treated with 500 mg/kg AHAE, there was no significant treatment-related effect. Hence, we postulate that this finding suggests that the disruption on the hormonal regulation could have been compensated by negative feedback response. The compensated effects of AHAE at 500 mg/kg and the presence of lowest observed adverse effect level (LOAEL) at 250 mg/kg has resulted in a non-monotonous dose response curve (NMDRC), which complicates the determination of the value of no-observed-adverse effect level (NOAEL).
OBJECTIVES: To assess the effects of mormodica charantia for type 2 diabetes mellitus.
SEARCH METHODS: Several electronic databases were searched, among these were The Cochrane Library (Issue 1, 2012), MEDLINE, EMBASE, CINAHL, SIGLE and LILACS (all up to February 2012), combined with handsearches. No language restriction was used.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared momordica charantia with placebo or a control intervention, with or without pharmacological or non-pharmacological interventions.
DATA COLLECTION AND ANALYSIS: Two authors independently extracted data. Risk of bias of the trials was evaluated using the parameters of randomisation, allocation concealment, blinding, completeness of outcome data, selective reporting and other potential sources of bias. A meta-analysis was not performed given the quality of data and the variability of preparations of momordica charantia used in the interventions (no similar preparation was tested twice).
MAIN RESULTS: Four randomised controlled trials with up to three months duration and investigating 479 participants met the inclusion criteria. Risk of bias of these trials (only two studies were published as a full peer-reviewed publication) was generally high. Two RCTs compared the effects of preparations from different parts of the momordica charantia plant with placebo on glycaemic control in type 2 diabetes mellitus. There was no statistically significant difference in the glycaemic control with momordica charantia preparations compared to placebo. When momordica charantia was compared to metformin or glibenclamide, there was also no significant change in reliable parameters of glycaemic control. No serious adverse effects were reported in any trial. No trial investigated death from any cause, morbidity, health-related quality of life or costs.
AUTHORS' CONCLUSIONS: There is insufficient evidence on the effects of momordica charantia for type 2 diabetes mellitus. Further studies are therefore required to address the issues of standardization and the quality control of preparations. For medical nutritional therapy, further observational trials evaluating the effects of momordica charantia are needed before RCTs are established to guide any recommendations in clinical practice.