Displaying publications 1001 - 1020 of 1359 in total

Abstract:
Sort:
  1. Khan NR, Harun MS, Nawaz A, Harjoh N, Wong TW
    Curr Pharm Des, 2015;21(20):2848-66.
    PMID: 25925113
    Transdermal drug delivery is impeded by the natural barrier of epidermis namely stratum corneum. This limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500 Da and melting point of less than 200°C. Nanotechnology has received widespread investigation as nanocarriers are deemed to be able to fluidize the stratum corneum as a function of size, shape, surface charges, and hydrophilicity-hydrophobicity balance, while delivering drugs across the skin barrier. This review provides an overview and update on the latest designs of liposomes, ethosomes, transfersomes, niosomes, magnetosomes, oilin- water nanoemulsions, water-in-oil nanoemulsions, bicontinuous nanoemulsions, covalently crosslinked polysaccharide nanoparticles, ionically crosslinked polysaccharide nanoparticles, polyelectrolyte coacervated nanoparticles and hydrophobically modified polysaccharide nanoparticles with respect to their ability to fuse or fluidize lipid/protein/tight junction regimes of skin, and effect changes in skin permeability and drug flux. Universal relationships of nanocarrier size, zeta potential and chemical composition on transdermal permeation characteristics of drugs will be developed and discussed.
    Matched MeSH terms: Nanoparticles/chemistry*
  2. Liew PS, Lertanantawong B, Lee SY, Manickam R, Lee YH, Surareungchai W
    Talanta, 2015 Jul 1;139:167-73.
    PMID: 25882423 DOI: 10.1016/j.talanta.2015.02.054
    Vibrio cholerae is a Gram-negative bacterium that causes cholera, a diarrheal disease. Cholera is widespread in poor, under-developed or disaster-hit countries that have poor water sanitation. Hence, a rapid detection method for V. cholerae in the field under these resource-limited settings is required. In this paper, we describe the development of an electrochemical genosensor assay using lyophilized gold nanoparticles/latex microsphere (AuNPs-PSA) reporter label. The reporter label mixture was prepared by lyophilization of AuNPs-PSA-avidin conjugate with different types of stabilizers. The best stabilizer was 5% sorbitol, which was able to preserve the dried conjugate for up to 30 days. Three methods of DNA hybridization were compared and the one-step sandwich hybridization method was chosen as it was fastest and highly specific. The performance of the assay using the lyophilized reagents was comparable to the wet form for detection of 1aM to 1fM of linear target DNA. The assay was highly specific for V. cholerae, with a detection limit of 1fM of PCR products. The ability of the sensor is to detect LAMP products as low as 50ngµl(-1). The novel lyophilized AuNPs-PSA-avidin reporter label with electrochemical genosensor detection could facilitate the rapid on-site detection of V. cholerae.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  3. Mohammed Modawe Alshik Edris N, Sulaiman Y
    Ecotoxicol Environ Saf, 2020 Oct 15;203:111026.
    PMID: 32888594 DOI: 10.1016/j.ecoenv.2020.111026
    The detection of phenolic compounds, i.e. resorcinol (RC) catechol (CC) and hydroquinone (HQ) are important due to their extremely hazardous impact and poor environmental degradation. In this work, a novel and sensitive composite of electrochemically reduced graphene oxide-poly(Procion Red MX-5B)/gold nanoparticles modified glassy carbon electrode (GCE/ERGO-poly(PR)/AuNPs) was assembled for voltammetric detection of benzenediol isomers (RC, CC, and HQ). The nanocomposite displayed high peak currents towards the oxidation of RC, HQ, and CC compared to non-modified GCE. The peak-to-peak separations were 0.44 and 0.10 V for RC-CC and CC-HQ, respectively. The limit of detections were 53, 53, and 79 nM for HQ, CC, and RC with sensitivities of 4.61, 4.38, and 0.56 μA/μM (S/N = 3), respectively. The nanocomposite displayed adequate reproducibility, besides good stability and acceptable recoveries for wastewater and cosmetic samples analyses.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  4. Talik Sisin NN, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, et al.
    Int J Nanomedicine, 2020;15:7805-7823.
    PMID: 33116502 DOI: 10.2147/IJN.S269214
    Purpose: This study aimed to quantify synergetic effects induced by bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) and baicalein-rich fraction (BRF) natural-based agent on the reactive oxygen species (ROS) generation and radiosensitization effects under irradiation of clinical radiotherapy beams of photon, electron and HDR-brachytherapy. The combined therapeutic responses of each compound and clinical radiotherapy beam were evaluated on breast cancer and normal fibroblast cell line.

    Methods: In this study, individual BiONPs, Cis, and BRF, as well as combinations of BiONPs-Cis (BC), BiONPs-BRF (BB) and BiONPs-Cis-BRF (BCB) were treated to the cells before irradiation using HDR brachytherapy with 0.38 MeV iridium-192 source, 6 MV photon beam and 6 MeV electron beam. The individual or synergetic effects from the application of the treatment components during the radiotherapy were elucidated by quantifying the ROS generation and radiosensitization effects on MCF-7 and MDA-MB-231 breast cancer cell lines as well as NIH/3T3 normal cell line.

    Results: The ROS generated in the presence of Cis stimulated the most substantial amount of ROS compared to the BiONPs and BRF. Meanwhile, the combination of the components had induced the higher ROS levels for photon beam than the brachytherapy and electron beam. The highest ROS enhancement relative to the control is attributable to the presence of BC combination in MDA-MB-231 cells, in comparison to the BB and BCB combinations. The radiosensitization effects which were quantified using the sensitization enhancement ratio (SER) indicate the highest value by BC in MCF-7 cells, followed by BCB and BB treatment. The radiosensitization effects are found to be more prominent for brachytherapy in comparison to photon and electron beam.

    Conclusion: The BiONPs, Cis and BRF are the potential radiosensitizers that could improve the efficiency of radiotherapy to eradicate the cancer cells. The combination of these potent radiosensitizers might produce multiple effects when applied in radiotherapy. The BC combination is found to have the highest SER, followed by the BCB combination. This study is also the first to investigate the effect of BRF in combination with BiONPs (BB) and BC (BCB) treatments.

    Matched MeSH terms: Nanoparticles*
  5. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, et al.
    Sci Rep, 2019 11 19;9(1):17013.
    PMID: 31745155 DOI: 10.1038/s41598-019-53573-9
    Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm-1 to 1650 cm-1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M-1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  6. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Zainol Hilmi NH, et al.
    Molecules, 2019 Jul 08;24(13).
    PMID: 31288497 DOI: 10.3390/molecules24132498
    Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells (Ganoderma fungus). A pathogenic fungus, Ganoderma boninense (G. boninense), is destructive to oil palm whereby it can cause significant loss to oil palm plantations located in the Southeast Asian countries, especially Malaysia and Indonesia. In regard to this matter, a series of chitosan nanoparticles loaded with the fungicide, hexaconazole, was prepared using various concentrations of crosslinking agent sodium tripolyphosphate (TPP). The resulting particle size revealed that the increase of the TPP concentration produced smaller particles. In addition, the in vitro fungicide released at pH 5.5 demonstrated that the fungicide from the nanoparticles was released in a sustainable manner with a prolonged release time up to 86 h. On another note, the in vitro antifungal studies established that smaller particle size leads to lower half maximum effective concentration (EC50) value, which indicates higher antifungal activity against G. boninense.
    Matched MeSH terms: Nanoparticles/chemistry*
  7. Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM
    Panminerva Med, 2018 Dec;60(4):230-231.
    PMID: 30563304 DOI: 10.23736/S0031-0808.18.03459-6
    Matched MeSH terms: Metal Nanoparticles/chemistry
  8. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  9. Li L, Zhang W, Desikan Seshadri VD, Cao G
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):3029-3036.
    PMID: 31328556 DOI: 10.1080/21691401.2019.1642902
    Nowadays, the synthesis and characterization of gold nanoparticles (AuNPs) from plant based extracts and effects of their anticancer have concerned an important interest. Marsdenia tenacissima (MT), a conventional Chinese herbal medicine, has long been used for thousands of years to treat tracheitis, asthma, rheumatism, etc. In this present study, we optimize the reaction of parameters to manage the nanoparticle size, which was categorized by high-resolution transmission electron microscopy (HR-TEM). A different characterization method, for example, UV-visible spectroscopy (UV-vis), fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were performed to consider the synthesized AuNPs getting from the MT leaf extract. The MT-AuNPs were analyzed for their cytotoxicity property against HepG2 cells by MTT analysis. The apoptosis was evaluated by using reactive oxygen species (ROS), migration assay, mitochondrial membrane potential (MMP) and apoptotic protein expression. Interestingly, the findings of our study observed the cytotoxicity effect of synthesized MT-AuNPs at a concentration of 59.62 ± 4.37 μg after 24 hrs treatment. Apoptosis was induced by the MT-AuNPs with enhanced ROS, changed MMP and inhibit the migration assay. Finally, the apoptosis was confirmed by the considerable up-regulation of Bax, caspase-9 and caspase-3, while the anti-apoptotic protein expressions of Bcl-2 and Bcl-XL were down-regulated. Although, in this studies, we evaluated the characterization, synthesis and anticancer action of gold nanoparticles from MT (MT-AuNPS) helpful for liver cancer therapeutics.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  10. Al-Sharqi A, Apun K, Vincent M, Kanakaraju D, Bilung LM, Sum MSH
    J Appl Microbiol, 2020 Jan;128(1):102-115.
    PMID: 31596989 DOI: 10.1111/jam.14471
    AIM: This work reports a new method for the use of lasers for the selective killing of bacteria targeted using light-absorbing Silver nanoparticles (Ag-NPs) conjugated with a specific antibody against the Gram-positive bacterium Staphylococcus aureus (S. aureus).

    METHODS AND RESULTS: Ag-NPs were synthesized using a chemical reduction method and characterized with respect to their surface plasmon resonance, surface morphology via transmission electron microscopy (TEM) and dynamic light scattering (DLS). The bacterial surface was targeted using 20 nm Ag-NPs conjugated with an anti-protein A antibody. Labelled bacteria were irradiated with blue visible laser at 2·04 W/cm2 . The antibacterial activity of functionalized Ag-NPs was investigated by fluorescence microscopy after irradiation, and morphological changes in S. aureus after laser treatment were assessed using scanning electron microscopy (SEM). The laser-irradiated, functionalized Ag-NPs exhibited significant bactericidal activity, and laser-induced bacterial damage was observed after 10 min of laser irradiation against S. aureus. The fluorescence microscopic analysis results supported that bacterial cell death occurred in the presence of the functionalized Ag-NPs.

    CONCLUSIONS: The results of this study suggest that a novel method for the preparation of functionalized nanoparticles has potential as a potent antibacterial agent for the selective killing of resistant disease-causing bacteria.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that Ag-NPs functionalized with a specific antibody, could be used in combination with laser radiation as a novel treatment to target resistant bacterial and fungal pathogens with minimal impact on normal microflora.

    Matched MeSH terms: Metal Nanoparticles/chemistry*
  11. Uppachai P, Srijaranai S, Poosittisak S, Md Isa I, Mukdasai S
    Molecules, 2020 May 29;25(11).
    PMID: 32485804 DOI: 10.3390/molecules25112528
    A new supramolecular electrochemical sensor for highly sensitive detection of dopamine (DA) was fabricated based on supramolecular assemblies of mixed two surfactants, tetra-butylammonium bromide (TBABr) and sodium dodecyl sulphate (SDS), on the electrodeposition of gold nanoparticles on graphene oxide modified on glassy carbon electrode (AuNPs/GO/GCE). Self-assembled mixed surfactants (TBABr/SDS) were added into the solution to increase the sensitivity for the detection of DA. All electrodes were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The supramolecular electrochemical sensor (TBABr/SDS⋅⋅⋅AuNPs/GO/GCE) showed excellent electrocatalytic activity toward the oxidation of DA. Under the optimum conditions, the concentration of DA was obtained in the range from 0.02 µM to 1.00 µM, with a detection limit of 0.01 µM (3s/b). The results displayed that TBABr/SDS⋅⋅⋅AuNPs/GO/GCE exhibited excellent performance, good sensitivity, and reproducibility. In addition, the proposed supramolecular electrochemical sensor was successfully applied to determine DA in human serum samples with satisfactory recoveries (97.26% to 104.21%).
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  12. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Nanoparticles/chemistry*
  13. Ranjani B, Pandian K, Kumar GA, Gopinath SCB
    Int J Biol Macromol, 2019 Jul 15;133:1280-1287.
    PMID: 31051204 DOI: 10.1016/j.ijbiomac.2019.04.196
    Silver nanoparticle was synthesized using D-glucosamine chitosan base as green reducing agent at elevated temperature in alkaline pH ranges. The excess of D-glucosamine chitosan base was used as it is both stabilizing and reducing agent at different pHs, regulates the shape and size of the silver nanoparticles. The progressive growth of silver nanoparticles was monitored by UV-Visible spectral studies. A sharp peak at 420 nm indicates the formation of spherical silver nanoparticles. The size and shape of silver nanoparticles were observed from Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) methods. The anisotropically grown nanoparticles were used as probe for Surface Enhanced Raman Studies (SERS) using ATP (4-aminothiophenol) as a model system. The catalytic behavior of silver nanoparticles was exploited for 4-nitrophenol reduction and observed that the reduction reaction follows pseudo first order kinetics with a rate constant 0.65 min. The antibacterial activity of silver nanoparticles was also tested for both gram-positive and -negative microorganisms, in which higher zone of inhibition was observed for gram negative microorganism.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  14. Anwar A, Siddiqui R, Raza Shah M, Khan NA
    J Microbiol Biotechnol, 2019 May 28;29(5):713-720.
    PMID: 31030451 DOI: 10.4014/jmb/1903.03009
    Acanthamoeba castellanii belonging to the T4 genotype may cause a fatal brain infection known as granulomatous amoebic encephalitis, and the vision-threatening eye infection Acanthamoeba keratitis. The aim of this study was to evaluate the antiamoebic effects of three clinically available antidiabetic drugs, Glimepiride, Vildagliptin and Repaglinide, against A. castellanii belonging to the T4 genotype. Furthermore, we attempted to conjugate these drugs with silver nanoparticles (AgNPs) to enhance their antiamoebic effects. Amoebicidal, encystation, excystation, and host cell cytotoxicity assays were performed to unravel any antiacanthamoebic effects. Vildagliptin conjugated silver nanoparticles (Vgt-AgNPs) characterized by spectroscopic techniques and atomic force microscopy were synthesized. All three drugs showed antiamoebic effects against A. castellanii and significantly blocked the encystation. These drugs also showed significant cysticidal effects and reduced host cell cytotoxicity caused by A. castellanii. Moreover, Vildagliptin-coated silver nanoparticles were successfully synthesized and are shown to enhance its antiacanthamoebic potency at significantly reduced concentration. The repurposed application of the tested antidiabetic drugs and their nanoparticles against free-living amoeba such as Acanthamoeba castellanii described here is a novel outcome that holds tremendous potential for future applications against devastating infection.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  15. Paudel KR, Wadhwa R, Mehta M, Chellappan DK, Hansbro PM, Dua K
    Toxicol In Vitro, 2020 Oct;68:104961.
    PMID: 32771431 DOI: 10.1016/j.tiv.2020.104961
    Airway inflammation and infections are the primary causes of damage in the airway epithelium, that lead to hypersecretion of mucus and airway hyper-responsiveness. The role of reactive oxygen species (ROS) and their components in the pathophysiological mechanisms of airway inflammation have been well-studied and emphasized for the past several decades. Rutin, a potent bioflavonoid, is well-known for its antioxidant, anti-inflammatory, especially in bronchial inflammation. However, poor solubility and rapid metabolism have led to its low bioavailability in biological systems, and hence limit its application. The present study aims to investigate the beneficial effects of rutin-loaded liquid crystalline nanoparticles (LCNs) against lipopolysaccharide (LPS) induced oxidative damage in human bronchial epithelial cell line (BEAS-2-B) cells in vitro. LPS was used to stimulate BEAS-2-B cells, causing the generation of nitric oxide (NO) and other reactive oxygen species (ROS) that had led to cellular apoptosis. The levels of NO and ROS were detected by, Griess reagent kit and dichlorodihydrofluorescein diacetate (DCFH-DA) respectively, whereas, cell apoptosis was studied by Annexin V-FITC and PI staining. The findings revealed that rutin-loaded LCNs significantly reduced NO, ROS levels and prevented apoptosis in BEAS-2B cells. The observations and findings provide a mechanistic understanding of the effectiveness of rutin-loaded LCNs in protecting the bronchial cells against airway inflammation, thus possessing a promising therapeutic option for the management of airway diseases.
    Matched MeSH terms: Nanoparticles/administration & dosage*
  16. Tee LK, Ling CS, Chua MJ, Abdullah S, Rosli R, Chowdhury EH
    Plasmid, 2011 Oct;66(1):38-46.
    PMID: 21419794 DOI: 10.1016/j.plasmid.2011.03.001
    Plasmid DNA is one of the indispensable components in molecular biology research and a potential biomaterial for gene therapy and DNA vaccination. Both quality and quantity of extracted plasmid DNA are of the great interests in cloning and subsequent expression of genes in vitro and in vivo for basic research and therapeutic interventions. Bacteria with extremely short generation times are the valuable source of plasmid DNA that can be isolated through a number of existing techniques. However, the current methods have some limitations in isolating high quality plasmid DNA since the multimeric plasmid which is believed to be more efficiently transcribed by RNA polymerase than the monomeric form, is almost lost during the extraction process. Recently, we developed a rapid isolation technique for multimeric plasmid based on generation of a 'protein aggregate' using a zwitterionic detergent and alkali. Here we have investigated the roles of different parameters in the whole extraction process to optimise the production of high quality multimeric plasmid DNA. Moreover, we have showed the advantageous effects of nanoparticles to effectively sediment the 'protein aggregate' for smooth elution of multimeric plasmid DNA from it. Finally, quality assessment study has revealed that the isolated multimeric DNA is at least 10 times more transcriptionally active than the monomeric form isolated by the commercially available Qiaget kit.
    Matched MeSH terms: Nanoparticles/chemistry
  17. Ahmad R, Kaus NHM, Hamid S
    Adv Exp Med Biol, 2020;1292:65-82.
    PMID: 30560443 DOI: 10.1007/5584_2018_302
    INTRODUCTION: Drug resistance has been a continuous challenge in cancer treatment. The use of nanotechnology in the development of new cancer drugs has potential. One of the extensively studied compounds is thymoquinone (TQ), and this work aims to compare two types of TQ-nanoformulation and its cytotoxicity toward resistant breast cancer cells.

    METHOD: TQ-nanoparticles were prepared and optimized by using two different formulations with different drugs to PLGA-PEG ratio (1:20 and 1:7) and different PLGA-PEG to Pluronic F68 ratio (10:1 and 2:1). The morphology and size were determined using TEM and DLS. Characterization of particles was done using UV-VIS, ATR-IR, entrapment efficiency, and drug release. The effects of drug, polymer, and surfactants were compared between the two formulations. Cytotoxicity assay was performed using MTS assay.

    RESULTS: TEM finding showed 96% of particles produced with 1:7 drug to PLGA-PEG were less than 90 nm in size and spherical in shape. This was confirmed with DLS which showed smaller particle size than those formed with 1:20 drug to PLGA-PEG ratio. Further analysis showed zeta potential was negatively charged which could facilitate cellular uptake as reported previously. In addition, PDI value was less than 0.1 in both formulations indicating monodispersed and less broad in size distribution. The absorption peak of PLGA-PEG-TQ-Nps was at 255 nm. The 1:7 drug to polymer formulation was selected for further analysis where the entrapment efficiency was 79.9% and in vitro drug release showed a maximum release of TQ of 50%. Cytotoxicity result showed IC50 of TQ-nanoparticle at 20.05 μM and free TQ was 8.25 μM.

    CONCLUSION: This study showed that nanoparticle synthesized with 1:7 drug to PLGA-PEG ratio and 2:1 PLGA-PEG to Pluronic F68 formed nanoparticles with less than 100 nm and had spherical shape as confirmed with DLS. This could facilitate its transportation and absorption to reach its target. There was conserved TQ stability as exhibited slow release of this volatile oil. The TQ-nanoparticles showed selective cytotoxic effect toward UACC 732 cells compared to MCF-7 breast cancer cells.

    Matched MeSH terms: Nanoparticles/chemistry*
  18. Mehta M, Deeksha, Tewari D, Gupta G, Awasthi R, Singh H, et al.
    Chem Biol Interact, 2019 Aug 01;308:206-215.
    PMID: 31136735 DOI: 10.1016/j.cbi.2019.05.028
    Oligonucleotide-based therapies are advanced novel interventions used in the management of various respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). These agents primarily act by gene silencing or RNA interference. Better methodologies and techniques are the need of the hour that can deliver these agents to tissues and cells in a target specific manner by which their maximum potential can be reached in the management of chronic inflammatory diseases. Nanoparticles play an important role in the target-specific delivery of drugs. In addition, oligonucleotides also are extensively used for gene transfer in the form of polymeric, liposomal and inorganic carrier materials. Therefore, the current review focuses on various novel dosage forms like nanoparticles, liposomes that can be used efficiently for the delivery of various oligonucleotides such as siRNA and miRNA. We also discuss the future perspectives and targets for oligonucleotides in the management of respiratory diseases.
    Matched MeSH terms: Nanoparticles/chemistry
  19. Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, et al.
    Chem Biol Interact, 2019 Feb 01;299:168-178.
    PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009
    Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
    Matched MeSH terms: Nanoparticles/chemistry
  20. Awaludin N, Abdullah J, Salam F, Ramachandran K, Yusof NA, Wasoh H
    Anal Biochem, 2020 12 01;610:113876.
    PMID: 32750357 DOI: 10.1016/j.ab.2020.113876
    The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease. Antibodies against Xoo bacterial cells were produced as specific bio-recognition molecules and the conjugation of these antibodies with graphene quantum dots and gold nanoparticles was performed and characterized, respectively. The combination of both these bio-probes as a fluorescent donor and metal quencher led to changes in the fluorescence signal. The immunoreaction between AntiXoo-GQDs, Xoo cells, and AntiXoo-AuNPs in the immuno-aggregation complex led to the energy transfer in the turn-off fluorescence-based quenching system. The change in fluorescence intensity was proportional to the logarithm of Xoo cells in the range of 100-105 CFU mL-1. The limit of detection was achieved at 22 CFU mL-1 and the specificity test against other plant disease pathogens showed high specificity towards Xoo. The detection of Xoo in real plant samples was also performed in this study and demonstrated satisfactory results.
    Matched MeSH terms: Metal Nanoparticles/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links