Displaying publications 981 - 1000 of 1359 in total

Abstract:
Sort:
  1. Hajian R, Mehrayin Z, Mohagheghian M, Zafari M, Hosseini P, Shams N
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:769-775.
    PMID: 25687007 DOI: 10.1016/j.msec.2015.01.072
    In this study, an electrochemical sensor was fabricated based on gold nanoparticles/ ethylenediamine/ multi-wall carbon-nanotubes modified gold electrode (AuNPs/en/MWCNTs/AuE) for determination of valrubicin in biological samples. Valrubicin was effectively accumulated on the surface of AuNPs/en/MWCNTs/AuE and produced a pair of redox peaks at around 0.662 and 0.578V (vs. Ag/AgCl) in citrate buffer (pH4.0). The electrochemical parameters including pH, buffer, ionic strength, scan rate and size of AuNPs have been optimized. There was a good linear correlation between cathodic peak current and concentration of valrubicin in the range of 0.5 to 80.0μmolL(-1) with the detection limit of 0.018μmolL(-1) in citrate buffer (pH4.0) and 0.1molL(-1) KCl. Finally, the constructed sensor was successfully applied for determination of valrubicin in human urine and blood serum. In further studies, the different sequences of single stranded DNA probes have been immobilized on the surface of AuNPs decorated on MWCNTs to study the interaction of oligonucleotides with valrubicin.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  2. Khandanlou R, Ahmad MB, Shameli K, Saki E, Kalantari K
    Int J Mol Sci, 2014;15(10):18466-83.
    PMID: 25318051 DOI: 10.3390/ijms151018466
    Modified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/ PCL-NCs) have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA) as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The XRD results showed that as the intensity of the peaks decreased with the increase of ORS/Fe3O4-NCs content in comparison with PCL peaks, the Fe3O4-NPs peaks increased from 1.0 to 60.0 wt. %. The TEM and SEM results showed a good dispersion of ORS/Fe3O4-NCs in the PCL matrix and the spherical shape of the NPs. The TGA analysis indicated thermal stability of ORS/Fe3O4-NCs increased after incorporation with PCL but the thermal stability of ORS/Fe3O4/PCL-NCs decreased with the increase of ORS/Fe3O4-NCs content. Tensile strength was improved with the addition of 5.0 wt. % of ORS/Fe3O4-NCs. The antibacterial activities of the ORS/Fe3O4/PCL-NC films were examined against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using nutrient agar. The results indicated that ORS/Fe3O4/PCL-NC films possessed a strong antibacterial activity with the increase in the percentage of ORS/Fe3O4-NCs in the PCL.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry*
  3. Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, et al.
    PLoS One, 2015;10(3):e0119726.
    PMID: 25747867 DOI: 10.1371/journal.pone.0119726
    Particle size and surface chemistry are potential determinants of silver nanoparticle (AgNP) respiratory toxicity that may also depend on the lung inflammatory state. We compared the effects of intratracheally-administered AgNPs (20 nm and 110 nm; polyvinylpyrrolidone (PVP) and citrate-capped; 0.1 mg/Kg) in Brown-Norway (BN) and Sprague-Dawley (SD) rats. In BN rats, there was both a neutrophilic and eosinophilic response, while in SD rats, there was a neutrophilic response at day 1, greatest for the 20 nm citrate-capped AgNPs. Eosinophilic cationic protein was increased in bronchoalveolar lavage (BAL) in BN and SD rats on day 1. BAL protein and malondialdehyde levels were increased in BN rats at 1 and 7 days, and BAL KC, CCL11 and IL-13 levels at day 1, with increased expression of CCL11 in lung tissue. Pulmonary resistance increased and compliance decreased at day 1, with persistence at day 7. The 20 nm, but not the 110 nm, AgNPs increased bronchial hyperresponsiveness on day 1, which continued at day 7 for the citrate-capped AgNPs only. The 20 nm versus the 110 nm size were more proinflammatory in terms of neutrophil influx, but there was little difference between the citrate-capped versus the PVP-capped AgNPs. AgNPs can induce pulmonary eosinophilic and neutrophilic inflammation with bronchial hyperresponsiveness, features characteristic of asthma.
    Matched MeSH terms: Metal Nanoparticles/adverse effects*
  4. Wan Ibrahim WA, Abd Ali LI, Sulaiman A, Sanagi MM, Aboul-Enein HY
    Crit Rev Anal Chem, 2014;44(3):233-54.
    PMID: 25391563 DOI: 10.1080/10408347.2013.855607
    The progress of novel sorbents and their function in preconcentration techniques for determination of trace elements is a topic of great importance. This review discusses numerous analytical approaches including the preparation and practice of unique modification of solid-phase materials. The performance and main features of ion-imprinting polymers, carbon nanotubes, biosorbents, and nanoparticles are described, covering the period 2007-2012. The perspective and future developments in the use of these materials are illustrated.
    Matched MeSH terms: Nanoparticles/chemistry
  5. Kamba AS, Ismail M, Ibrahim TA, Zakaria ZA, Gusau LH
    Biomed Res Int, 2014;2014:391869.
    PMID: 25028650 DOI: 10.1155/2014/391869
    Bones are the most frequent site for breast cancer cells to settle and spread (metastasise); bone metastasis is considered to have a substantial impact on the quality of patients with common cancers. However, majority of breast cancers develop insensitivity to conventional chemotherapy which provides only palliation and can induce systemic side effects. In this study we evaluated the effect of free Dox and CaCO3/Dox nanocrystal on MCF-7 breast cancer using MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide), neural red, and lactate dehydrogenase colorimetric assays while DNA fragmentation and BrdU genotoxicity were also examined. Apoptogenic protein Bax, cytochrome C, and caspase-3 protein were analysed. Morphological changes of MCF-7 were determined using contrast light microscope and scanning and transmission electron microscope (SEM and TEM). The findings of the analysis revealed higher toxicity of CaCO3/Dox nanocrystal and effective cells killing compared to free Dox, morphological changes such as formation of apoptotic bodies, membrane blebbing, and absent of microvilli as indicated by the SEM analysis while TEM revealed the presence of chromatin condensation, chromosomal DNA fragmentation, cell shrinkage, and nuclear fragmentation. Results of TUNEL assay verified that most of the cells undergoes apoptosis by internucleosomal fragmentation of genomic DNA whereas the extent of apoptotic cells was calculated using the apoptotic index (AI). Therefore, the biobased calcium carbonate nanocrystals such as Dox carriers may serve as an alternative to conventional delivery system.
    Matched MeSH terms: Nanoparticles*
  6. Khalilpour A, Sadjjadi SM, Moghadam ZK, Yunus MH, Zakaria ND, Osman S, et al.
    Am J Trop Med Hyg, 2014 Nov;91(5):994-9.
    PMID: 25200268 DOI: 10.4269/ajtmh.14-0170
    Cystic echinococcosis (CE) caused by infection with Echinococcus granulosus is of major concern for humans in many parts of the world. Antigen B was prepared from E. granulosus hydatid fluid, and Western blots confirmed eight batches showing a band corresponding to the 8-/12-kDa subunit with positive serum and no low-molecular mass band (< 15 kDa) with negative serum. The batches were pooled and used to prepare lateral flow immunoglobulin G4 (IgG4) and IgG dipsticks. Diagnostic sensitivity was determined using serum samples from 21 hydatidosis patients, and diagnostic specificity was established using sera from 17 individuals infected with other parasites and 15 healthy people. IgG4 dipstick had a diagnostic sensitivity of 95% (20 of 21) and a specificity of 100% (32 of 32). The IgG dipstick had a sensitivity of 100% (21 of 21) and a specificity of 87.5% (28 of 32). Thus, both IgG and IgG4 dipsticks had high sensitivities, but IgG4 had greater specificity for the diagnosis of human CE.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  7. Tiash S, Othman I, Rosli R, Chowdhury EH
    Curr Drug Deliv, 2014;11(2):214-22.
    PMID: 24328684
    Most of the classical drugs used today to destroy cancer cells lead to the development of acquired resistance in those cells by limiting cellular entry of the drugs or exporting them out by efflux pumps. As a result, higher doses of drugs are usually required to kill the cancer cells affecting normal cells and causing numerous side effects. Accumulation of the therapeutic level of drugs inside the cancer cells is thus required for an adequate period of time to get drugs' complete therapeutic efficacy minimizing the side effects on normal cells. In order to improve the efficacy of chemotherapeutic drugs, nanoparticles of carbonate apatite and its strontium (Sr(2+))-substituted derivative were used in this study to make complexes with three classical anticancer drugs, methotrexate, cyclophosphamide and 5-flurouracil. The binding affinities of these drugs to apatite were evaluated by absorbance and HPLC analysis and the therapeutic efficacy of drug-apatite complexes was determined by cell viability assay. Carbonate apatite demonstrated significant binding affinity towards methotrexate and cyclophosphamide leading to more cellular toxicity than free drugs in MCF-7 and 4T1 breast cancer cells. Moreover, Sr(2+) substitution in carbonate apatite with resulting tiny particles less than 100 nm in diameter further promoted binding of methotrexate to the nanocarriers indicating that Sr(2+)-substituted apatite nanoparticles have the high potential for loading substantial amount of anti-cancer drugs with eventual more therapeutic effectiveness.
    Matched MeSH terms: Nanoparticles/administration & dosage
  8. Kadir A, Mokhtar MT, Wong TW
    J Pharm Sci, 2013 Dec;102(12):4353-63.
    PMID: 24258282 DOI: 10.1002/jps.23742
    The relationship of high and low molecular weight mannuronic acid (M)- and guluronic acid (G)-rich alginate nanoparticles as oral insulin carrier was elucidated. Nanoparticles were prepared through ionotropic gelation using Ca(2+) , and then in vitro physicochemical attributes and in vivo antidiabetic characteristics were examined. The alginate nanoparticles had insulin release retarded when the matrices had high alginate-to-insulin ratio or strong alginate-insulin interaction via OH moiety. High molecular weight M-rich alginate nanoparticles were characterized by assemblies of long polymer chains that enabled insulin encapsulation with weaker polymer-drug interaction than nanoparticles prepared from other alginate grades. They were able to encapsulate and yet release and have insulin absorbed into systemic circulation, thereby lowering rat blood glucose. High molecular weight G- and low molecular weight M-rich alginate nanoparticles showed remarkable polymer-insulin interaction. This retarded the drug release and negated its absorption. Blood glucose lowering was, however, demonstrated in vivo with insulin-free matrices of these nanoparticles because of the strong alginate-glucose binding that led to intestinal glucose retention. Alginate nanoparticles can be used as oral insulin carrier or glucose binder in the treatment of diabetes as a function of its chemical composition. High molecular weight M-rich alginate nanoparticles are a suitable vehicle for future development into oral insulin carrier.
    Matched MeSH terms: Nanoparticles/chemistry
  9. Thavanathan J, Huang NM, Thong KL
    Biosens Bioelectron, 2014 May 15;55:91-8.
    PMID: 24368225 DOI: 10.1016/j.bios.2013.11.072
    The unique property of gold nanoparticles (Au NP) to induce colour change and the versatility of graphene oxides (GO) in surface modification makes them ideal in the application of colorimetric biosensor. Thus we developed a label free optical method to detect DNA hybridization through a visually observed colour change. The Au NP is conjugated to a DNA probe and is allowed to hybridize with the DNA target to the GO thus causing a change in colour from pinkish-red to purplish blue. Spectrophometry analysis gave a wavelength shift of 22 nm with 1 µM of DNA target. Sensitivity testing using serially diluted DNA conjugated GO showed that the optimum detection was at 63 nM of DNA target with the limit at 8 nM. This proves the possibility for the detection of DNA hybridization through the use of dual nanoparticle system by visual observation.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  10. Kuan GC, Sheng LP, Rijiravanich P, Marimuthu K, Ravichandran M, Yin LS, et al.
    Talanta, 2013 Dec 15;117:312-7.
    PMID: 24209346 DOI: 10.1016/j.talanta.2013.09.016
    Epizootic ulcerative syndrome (EUS) is a devastating fish disease caused by the fungus, Aphanomyces invadans. Rapid diagnosis of EUS is needed to control and treat this highly invasive disease. The current diagnostic methods for EUS are labor intensive. We have developed a highly sensitive and specific electrochemical genosensor towards the 18S rRNA and internal transcribed spacer regions of A. invadans. Multiple layers of latex were synthesized with the help of polyelectrolytes, and labeled with gold nanoparticles to enhance sensitivity. The gold-latex spheres were functionalized with specific DNA probes. We describe here the novel application of this improved platform for detection of PCR product from real sample of A. invadans using a premix sandwich hybridization assay. The premix assay was easier, more specific and gave higher sensitivity of one log unit when compared to the conventional method of step-by-step hybridization. The limit of detection was 0.5 fM (4.99 zmol) of linear target DNA and 1 fM (10 amol) of PCR product. The binding positions of the probes to the PCR amplicons were optimized for efficient hybridization. Probes that hybridized close to the 5' or 3' terminus of the PCR amplicons gave the highest signal due to minimal steric hindrance for hybridization. The genosensor is highly suitable as a surveillance and diagnostic tool for EUS in the aquaculture industry.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  11. Saidin S, Chevallier P, Abdul Kadir MR, Hermawan H, Mantovani D
    Mater Sci Eng C Mater Biol Appl, 2013 Dec 1;33(8):4715-24.
    PMID: 24094179 DOI: 10.1016/j.msec.2013.07.026
    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  12. Idris A, Misran E, Hassan N, Abd Jalil A, Seng CE
    J Hazard Mater, 2012 Aug 15;227-228:309-16.
    PMID: 22682796 DOI: 10.1016/j.jhazmat.2012.05.065
    In this study magnetic separable photocatalyst beads containing maghemite nanoparticles (γ-Fe(2)O(3)) in polyvinyl alcohol (PVA) polymer were prepared and used in the reduction of Cr(VI) to Cr(III) in an aqueous solution under sunlight. The unique superparamagnetic property of the photocatalyst contributed by the γ-Fe(2)O(3) and robust property of PVA polymer allow the magnetic beads to be recovered easily and reused for at least 7 times without washing. The concentration of γ-Fe(2)O(3) was varied from 8% (v/v) to 27% (v/v) and the results revealed that the beads with 8% (v/v) γ-Fe(2)O(3) exhibited the best performance where Cr(VI) was reduced to Cr(III) in only 30 min under sunlight. The use of the PVA has improved the bead properties and life cycle of beads which is in line with sustainable practices.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  13. Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, et al.
    Int J Mol Sci, 2012;13(6):6639-50.
    PMID: 22837654 DOI: 10.3390/ijms13066639
    The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  14. Ali ME, Hashim U, Mustafa S, Man YB, Yusop MH, Bari MF, et al.
    Nanotechnology, 2011 May 13;22(19):195503.
    PMID: 21430321 DOI: 10.1088/0957-4484/22/19/195503
    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  15. Wong TW
    Recent Pat Drug Deliv Formul, 2011 Sep;5(3):227-43.
    PMID: 21834774
    Design of oral fast-release solid dispersion of poorly water-soluble drugs has been a great challenge over past decades on issues of drug recrystallization, drug polymorphism, formulation limited to low drug-to-carrier ratio and drug particle aggregation in matrix. The complexity in solid dispersion design is envisaged to be resolvable by the use of nanoparticulate system as solid dosage form. This manuscript reviews several patented processing approaches of nanoparticulate solid dispersion that have been reported recently. Through drug nanoencapsulation, a higher content of drug may be delivered with less aggregation via placing the same drug mass in a greater number of tinier carriers. Nanoencapsulation, by its own process of formation, brings about submicron particles. Keeping drug in these nanoparticles, a remarkable rise in specific surface area of drug is realized for dissolution. The augmentation of drug dissolution can be sufficiently high to the extent that the influences of polymorphism and crystallization phenomenon on drug dissolution in a solid dispersion may be negligible.
    Matched MeSH terms: Nanoparticles/chemistry*
  16. Sakeena MH, Elrashid SM, Muthanna FA, Ghassan ZA, Kanakal MM, Laila L, et al.
    J Oleo Sci, 2010;59(7):395-400.
    PMID: 20513974
    This study sets out to investigate the in vitro permeation of ketoprofen from the formulated nanoemulsions through excised rat skin. In vitro permeation of ketoprofen nanoemulsion through rat skin was evaluated in Franz diffusion cells and compared with marketed product (Fastum gel). Limonene which has been reported to be a good enhancer for ketoprofen was selected. Moreover the effects of limonene which was added to the nanoemulsion formulations at levels of 1%, 2%, 3% and on rat skin permeation of ketoprofen were also evaluated. The selected optimized formulation was further studied for skin irritation. Utilization of limonene as a penetration enhancer increased the permeation of ketoprofen from the formulated nanoemulsion with increasing concentrations of limonene. The results obtained showed that nanoemulsion with 3% limonene produced similar and comparable skin permeation of ketoprofen with marketed formulation and the skin irritation study on rats showed the optimized formulation prepared was safe.
    Matched MeSH terms: Nanoparticles*
  17. Zakaria SM, Sharif Zein SH, Othman MR, Jansen JA
    J Biomed Mater Res A, 2013 Jul;101(7):1977-85.
    PMID: 23225849 DOI: 10.1002/jbm.a.34506
    Electrospinning of hydroxyapatite (HA)/polyvinyl butyral solution resulted in the formation of fibers with average diameter of 937-1440 nm. These fibers were converted into HA nanoparticles with size <100 nm after undergoing calcination treatment at 600°C. The diameter of the fiber was found to be influenced by applied voltage and spinning distance. The injection flowrate did not affect the diameter significantly. The electrospinning method successfully reduced the commercial HA particle size in the range of 400-1100 nm into <100 nm. The dispersion of the finally calcined HA nanoparticles was improved significantly after anionic sodium dodecyl sulfate surfactant was introduced. The experimental data of HA growth kinetics were subjected to the integral method of analysis, and the rate law of the reaction was found to follow the first order reaction.
    Matched MeSH terms: Nanoparticles*
  18. Loo Ch, Basri M, Ismail R, Lau H, Tejo B, Kanthimathi M, et al.
    Int J Nanomedicine, 2013;8:13-22.
    PMID: 23293516 DOI: 10.2147/IJN.S35648
    To study the effects of varying lipid concentrations, lipid and oil ratio, and the addition of propylene glycol and lecithin on the long-term physical stability of nanostructured lipid nanocarriers (NLC), skin hydration, and transepidermal water loss.
    Matched MeSH terms: Nanoparticles/chemistry
  19. Lau CP, Abdul-Wahab MF, Jaafar J, Chan GF, Abdul Rashid NA
    J Microbiol Immunol Infect, 2017 Aug;50(4):427-434.
    PMID: 26427880 DOI: 10.1016/j.jmii.2015.08.004
    BACKGROUND/PURPOSE: Currently, silver nanoparticles (AgNPs) have gained importance in various industrial applications. However, their impact upon release into the environment on microorganisms remains unclear. The aim of this study was to analyze the effect of polyvinylpyrrolidone-capped AgNPs synthesized in this laboratory on two bacterial strains isolated from the environment, Gram-negative Citrobacter sp. A1 and Gram-positive Enterococcus sp. C1.

    METHODS: Polyvinylpyrrolidone-capped AgNPs were synthesized by ultrasound-assisted chemical reduction. Characterization of the AgNPs involved UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Citrobacter sp. A1 and Enterococcus sp. C1 were exposed to varying concentrations of AgNPs, and cell viability was determined. Scanning electron microscopy was performed to evaluate the morphological alteration of both species upon exposure to AgNPs at 1000 mg/L.

    RESULTS: The synthesized AgNPs were spherical in shape, with an average particle size of 15 nm. The AgNPs had different but prominent effects on either Citrobacter sp. A1 or Enterococcus sp. C1. At an AgNP concentration of 1000 mg/L, Citrobacter sp. A1 retained viability for 6 hours, while Enterococcus sp. C1 retained viability only for 3 hours. Citrobacter sp. A1 appeared to be more resistant to AgNPs than Enterococcus sp. C1. The cell wall of both strains was found to be morphologically altered at that concentration.

    CONCLUSION: Minute and spherical AgNPs significantly affected the viability of the two bacterial strains selected from the environment. Enterococcus sp. C1 was more vulnerable to AgNPs, probably due to its cell wall architecture and the absence of silver resistance-related genes.

    Matched MeSH terms: Nanoparticles/chemistry*
  20. Tan SL, Stanslas J, Basri M, Abedi Karjiban RA, Kirby BP, Sani D, et al.
    Curr Drug Deliv, 2015;12(6):795-804.
    PMID: 26324229
    Carbamzepine (CBZ) was encapsulated in a parenteral oil-in-water nanoemulsion, in an attempt to improve its bioavailability. The particle size, polydispersity index and zeta potential were measured using dynamic light scattering. Other parameters such as pH, osmolality, viscosity, drug loading efficiency and entrapment efficiency were also recorded. Transmission electron microscopy revealed that emulsion droplets were almost spherical in shape and in the nano-range. The in vitro release profile was best characterized by Higuchi's equation. The parenteral nanoemulsion of CBZ showed significantly higher AUC0→5, AUC0→∞, AUMC0→5, AUMC0→∞, Cmax and lower clearance than that of CBZ solution in plasma. Additionally, parenteral nanoemulsion of CBZ showed significantly higher AUC0→∞, AUMC0→∞ and Cmaxthan that of CBZ solution in brain. The parenteral nanoemulsion of CBZ could therefore use as a carrier, worth exploring further for brain targeting.
    Matched MeSH terms: Nanoparticles*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links