"This article examines some of the links between the phenomena of urban migration and squatter settlements in the Third World city. This will be done by demonstrating that both are outcomes of fundamental social and political forces that have operated on these societies. Migration and squatting are placed in a context of the historical processes that led to the uneven development of Malaysia. The article offers some explanation for the origin of the inequalities observed in spatial structures--in this case urban housing--by focusing on one of the contributory factors, namely migration."
The author examines migration trends in Malay villages. "This report deals with the case of Galok, a settlement opened in the last decade of nineteenth century about 40 kilometers up the Kelantan River, based on field data collected in 1970/71 and 1984." The low rate of population growth due to migration is analyzed, with a focus on the impact of rural-urban migration and changes in household composition. (SUMMARY IN ENG)
The medical-and-demographic processes as a starting point for the planning of means and resources for the short- and average-term future are forecasted in the paper on the basis of long-term peculiarities of the natural-science data and with respect for the social-and-economic crisis now underway in the country.
Many fisheries management and conservation plans are based on the genetic structure of organisms in pelagic ecosystems; however, these structures tend to vary over time, particularly in cyclic ocean currents. We performed genetic analyses on the populations of the pelagic fish, Megalaspis cordyla (Osteichthyes: Carangidae) in the area surrounding Taiwan during 2000-2001. Genotyping was performed on M. cordyla collected seasonally around Taiwan as well as specimens collected from Singapore (Malacca strait) and Indonesia (Banda Sea). Gonadosomatic indices (GSI) revealed that M. cordyla does not spawn near Taiwan. Data related to the mitochondrial control region revealed that the samples from Singapore and Indonesia represented two distinct genetic cohorts. Genotyping revealed that during the summer (June-August 2000), the Indonesian variant was dominant in eastern Taiwan (presumably following the Kuroshio Current) and in the Penghu region (following the Kuroshio Branch Current). During the same period, the Singapore genotype was dominant along the western coast of Taiwan (presumably following the South China Sea Current); however, the number dropped during the winter (December-February 2001) under the effects of the China Coast Current. Divergence time estimates indicate that the two genetic cohorts split during the last glacial maximum. Despite the fact that these results are based on sampling from a single year, they demonstrate the importance of seasonal sampling in unravelling the genetic diversity in pelagic ecosystems.
The Sulu-Sulawesi Sea, with neighboring Indonesian Seas and South China Sea, lies at the center of the world's tropical marine biodiversity. Encircled by 3 populous, developing nations, the Philippines, Indonesia and Malaysia, the Sea and its adjacent coastal and terrestrial ecosystems, supports ca. 33 million people, most with subsistence livelihoods heavily reliant on its renewable natural resources. These resources are being impacted severely by rapid population growth (> 2% yr-1, with expected doubling by 2035) and widespread poverty, coupled with increasing international market demand and rapid technological changes, compounded by inefficiencies in governance and a lack of awareness and/or acceptance of some laws among local populations, particularly in parts of the Philippines and Indonesia. These key root causes all contribute to illegal practices and corruption, and are resulting in severe resource depletion and degradation of water catchments, river, lacustrine, estuarine, coastal, and marine ecosystems. The Sulu-Sulawesi Sea forms a major geopolitical focus, with porous borders, transmigration, separatist movements, piracy, and illegal fishing all contributing to environmental degradation, human suffering and political instability, and inhibiting strong trilateral support for interventions. This review analyzes these multifarious environmental and socioeconomic impacts and their root causes, provides a future prognosis of status by 2020, and recommends policy options aimed at amelioration through sustainable management and development.
This article uses metric and nonmetric dental data to test the "two-layer" or immigration hypothesis whereby Southeast Asia was initially occupied by an "Australo-Melanesian" population that later underwent substantial genetic admixture with East Asian immigrants associated with the spread of agriculture from the Neolithic period onwards. We examined teeth from 4,002 individuals comprising 42 prehistoric and historic samples from East Asia, Southeast Asia, Australia, and Melanesia. For the odontometric analysis, dental size proportions were compared using factor analysis and Q-mode correlation coefficients, and overall tooth size was also compared between population samples. Nonmetric population affinities were estimated by Smith's distances, using the frequencies of 16 tooth traits. The results of both the metric and nonmetric analyses demonstrate close affinities between recent Australo-Melanesian samples and samples representing early Southeast Asia, such as the Early to Middle Holocene series from Vietnam, Malaysia, and Flores. In contrast, the dental characteristics of most modern Southeast Asians exhibit a mixture of traits associated with East Asians and Australo-Melanesians, suggesting that these populations were genetically influenced by immigrants from East Asia. East Asian metric and/or nonmetric traits are also found in some prehistoric samples from Southeast Asia such as Ban Kao (Thailand), implying that immigration probably began in the early Neolithic. Much clearer influence of East Asian immigration was found in Early Metal Age Vietnamese and Sulawesi samples. Although the results of this study are consistent with the immigration hypothesis, analysis of additional Neolithic samples is needed to determine the exact timing of population dispersals into Southeast Asia.
The effects of logging and recovery process on avian richness and diversity was compared in recently logged and thirty year post-harvested hill dipterocarp tropical rainforest, using mist-netting method. Atotal of 803 bird individuals representing 86 bird species and 29 families (i.e., 37.90% from recently logged forest and 62.10% from thirty year post-harvested forest) were captured from October 2010 to September, 2012. Twenty one bird species were commonly captured from both types of forests, 37 bird species were caught only in thirty year post-harvested forest and 28 bird species were caught only from recently logged forest. Arachnothera longirostra--Little Spiderhunter, Malacopteron magnum--Rufous-crowned Babbler, Alophoixus phaeocephalus -Yellow-bellied Bulbul and Meiglyptes tukki--Buff-necked Woodpecker were the most abundant four bird species in the thirty year post-harvested forest. On the contrary, seven bird species, i.e., Trichastoma rostratum - White-chested Babbler, Lacedo pulchella - Banded Kingfisher, Picus miniaceus--Banded Woodpecker, Enicurus ruficapillus - Chestnut-naped Forktail, Anthreptes simplex--Plain Sunbird, Muscicapella hodgsoni--Pygmy Blue Flycatcher and Otus rufescens--Reddish Scope Owl were considered as the rarest (i.e., each represented only 0.12%). Likewise, A. longirostra, Pycnonotus eythropthalmos - Spectacled Bulbul, P. simplex--Cream-vented Bulbul and Merops viridis--Blue-throated Bee-eater were the most dominant and Copsychus malabaricus--White-rumped Shama Eurylaimus javanicus--Banded Broadbill /xos malaccensis - Streaked Bulbul and Harpactes diardii--Diard's Trogon (each 0.12%) were the rarest bird species in recently logged forest. CAP analysis indicated that avian species in thirty year post-harvested forest were more diverse and evenly distributed than recently logged forest. However, recently logged forest was rich in bird species than thirty year post- harvested forest. The results revealed that logging and retrieval process affect bird species richness and diversity. However, bird species may respond differently from habitat to habitat, i.e., forest logging causes disturbance of some avian species while recovery process may replace the loss of vegetation and harbour a wide array of avian species richness and diversity.
Life-history variables for three incidentally captured species of seahorse (Kellogg's seahorse Hippocampus kelloggi, the hedgehog seahorse Hippocampus spinosissimus and the three-spot seahorse Hippocampus trimaculatus) were established using specimens obtained from 33 fisheries landing sites in Peninsular Malaysia. When samples were pooled by species across the peninsula, sex ratios were not significantly different from unity, and height and mass relationships were significant for all species. For two of these species, height at physical maturity (HM ) was smaller than the height at which reproductive activity (HR ) commenced: H. spinosissimus (HM = 99·6 mm, HR = 123·2 mm) and H. trimaculatus (HM = 90·5 mm, HR = 121·8 mm). For H. kelloggi, HM could not be estimated as all individuals were physically mature, while HR = 167·4 mm. It appears that all three Hippocampus spp. were, on average, caught before reproducing; height at 50% capture (HC ) was ≥HM but ≤HR . The results from this study probe the effectiveness of assessment techniques for data-poor fisheries that rely heavily on estimates of length at maturity, especially if maturity is poorly defined. Findings also question the sustainability of H. trimaculatus catches in the south-west region of Peninsular Malaysia, where landed specimens had a notably smaller mean height (86·2 mm) and markedly skewed sex ratio (6% males) compared with samples from the south-east and north-west of the peninsula.
The Sumatran orangutan is currently listed by the IUCN as critically endangered and the Bornean species as endangered. Unless effective conservation measures are enacted quickly, most orangutan populations without adequate protection face a dire future. Two main strategies are being pursued to conserve orangutans: (i) rehabilitation and reintroduction of ex-captive or displaced individuals; and (ii) protection of their forest habitat to abate threats like deforestation and hunting. These strategies are often mirrored in similar programs to save other valued and endangered mega-fauna. Through GIS analysis, collating data from across the literature, and combining this information within a modelling and decision analysis framework, we analysed which strategy or combination of strategies is the most cost-effective at maintaining wild orangutan populations, and under what conditions. We discovered that neither strategy was optimal under all circumstances but was dependent on the relative cost per orangutan, the timescale of management concern, and the rate of deforestation. Reintroduction, which costs twelve times as much per animal as compared to protection of forest, was only a cost-effective strategy at very short timescales. For time scales longer than 10-20 years, forest protection is the more cost-efficient strategy for maintaining wild orangutan populations. Our analyses showed that a third, rarely utilised strategy is intermediate: introducing sustainable logging practices and protection from hunting in timber production forest. Maximum long-term cost-efficiency is achieved by working in conservation forest. However, habitat protection involves addressing complex conservation issues and conflicting needs at the landscape level. We find a potential resolution in that well-managed production forests could achieve intermediate conservation outcomes. This has broad implications for sustaining biodiversity more generally within an economically productive landscape. Insights from this analysis should provide a better framework to prioritize financial investments, and facilitate improved integration between the organizations that implement these strategies.
A comparative study of understorey birds inhabiting different habitats, that is, virgin jungle reserve (VJR) and regenerated forest (RF), was conducted in Ulu Gombak Forest Reserve and Selangor and Triang Forest Reserve, Negeri Sembilan, Peninsular Malaysia. The objective of this study was to assess the diversity of understorey birds in both habitats and the effects of forest regeneration on the understorey bird community. The mist-netting method was used to capture understorey birds inhabiting both habitats in both locations. Species composition and feeding guild indicated that understorey bird populations were similar in the two habitats. However, the number of secondary forest species such as Little spiderhunter (Arachnothera longirostra) in VJR is increasing due to its proximity to RF. This study discovered that RFs in both study areas are not yet fully recovered. However, based on the range of species discovered, the RFs have conservation value and should be maintained because they harbour important forest species such as babblers and flycatchers. The assessment of the community structure of understorey birds in VJR and RF is important for forest management and conservation, especially where both habitats are intact.
Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1-68.6 settled individuals per 10,000 m(2)). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.
The population size, age-class structure, and movement of the American cockroach, Periplaneta americana (L.) (Dictyoptera: Blattidae), were studied in three sewers in Penang, Malaysia, from September 2008 to October 2009. Eighteen to 20 glass-jar traps (two per manhole) were deployed for a 24-h period during each sampling occasion at each sewer. Adults and nymphs were active throughout the study period, with an average monthly trap catch of 57-97 adults and 79-99 nymphs. The mean proportions of adults and nymphs at the three sewers ranged from 0.47 to 0.57. Of the 2177 male and 2717 female cockroaches marked and released over the three sewers, recapture rates were 29.4-45.8 and 30.8-47.0%, respectively. The proportion of marked males and females did not differ significantly from the proportion of recaptured marked males and females. However, the mean number of times a marked female was recaptured was significantly greater than that of males. Of the 783 males and 1,030 females that were marked and recaptured, 19.4 and 24.7%, respectively, had moved between manholes, and significantly more females than males moved between manholes. Of the 406 recaptured marked adults that moved between manholes, 90.4% moved a distance of 2-20 m from their initial release site; one male moved 192 m, the longest distance recorded. Trap catch on each sampling occasion was positively correlated with daily mean temperature. The number of cockroach movements between manholes also was correlated with the mean daily minimum temperature.
The relationships between vertebrate pests and crop damage are often complex and difficult to study. In palm oil plantations rodents remain the major pests, causing substantial monetary losses. The present study examined the numerical and functional responses of rodents to changes in the availability of oil palm fruit and the damage associated with that response. For the study, 200 traps were set in pairs on a 10 × 10 trapping grid for 3 consecutive nights in each of 6 study plots at 8-week intervals in a 2569 ha oil palm plantation at Labu, Negeri Sembilan state in Peninsular Malaysia over 14 months. A total of 1292 individual rats were captured over 25 200 trap-nights. Animals were identified, aged, sexed, weighed and measured. An index of the relative abundance of rats was calculated based on trapping success. Damage to infructescences was assessed at each trap point. Regardless of the age of palms, there were positive and significant relationships between the relative abundance of rats and numbers of infructescences. The levels of damage to infructescences were significantly correlated with the relative abundance of rats. A steep increase in damage was observed with an increase in mature infructescences, indicating a feeding preference of rats for mature infructescences. For both males and females of all rat species, there were weak and non-significant correlations between body condition and infructescence numbers. These results indicated that there was a numerical and a functional response by rats to the availability of palm fruit and a resulting increase in depredation of oil palm fruits. The ways in which this information might aid in future pest control are discussed.
The most economically important form of aquaculture is fish farming, which is an industry that accounts for an ever increasing share of world fishery production. Molecular markers can be used to enhance the productivity of the aquaculture and fish industries to meet the increasing demand. Molecular markers can be identified via a DNA test regardless of the developmental stage, age or environmental challenges experienced by the organism. The application of 16s and cytochrome b markers has enabled rapid progress in investigations of genetic variability and inbreeding, parentage assignments, species and strain identification and the construction of high resolution genetic linkage maps for aquaculture fisheries. In this review, the advantages of principles and potential power tools of 16s and cytochrome b markers are discussed. Main findings in term of trend, aspects and debates on the reviewed issue made from the model of aquatic species for the benefit of aquaculture genomics and aquaculture genetics research are discussed. The concepts in this review are illustrated with various research examples and results that relate theory to reality and provide a strong review of the current status of these biotechnology topics.