The VP4, VP2, and VP1 gene regions were evaluated for their usefulness in typing human enteroviruses. Three published RT-PCR primers sets targeting separately these three gene regions were used. Initially, from a total of 86 field isolates (36 HEV-A, 40 HEV-B, and 10 HEV-C) tested, 100% concordance in HEV-A was identified from all three gene regions (VP4, VP2, and VP1). However, for HEV-B and HEV-C viruses, only the VP2 and VP1 regions, and not VP4, showed 100% concordance in typing these viruses. To evaluate further the usefulness of VP4 in typing HEV-A enteroviruses, 55 Japanese and 203 published paired VP4 and VP1 nucleotide sequences were also examined. In each case, typing by VP4 was 100% in concordance with typing using VP1. Given these results, it is proposed that for HEV-A enteroviruses, all three gene regions (VP4, VP2, and VP1), would be useful for typing these viruses. These options would enhance the capability of laboratories in identifying these viruses and would greatly help in outbreaks of hand, foot, and mouth disease.
The HER2 codon Ile655Val and Cyclin D1 (CCND1) G870A polymorphisms were analyzed in a hospital-based Malaysian population using PCR-RFLP method. Peripheral blood samples were collected from 230 breast cancer patients, and 200 normal and healthy women who had no history of breast disease or breast cancer. We evaluated the association between HER2 or CCND1 polymorphisms and breast cancer risk, and clinico-pathological parameters in the population. The genotype and allele frequencies of HER2 (P=0.163 vs P=0.0622) and CCND1 (P=0.377 vs P=0.284) polymorphisms were not significantly different between the breast cancer cases and normal subjects, respectively. Women who were Ile/Val heterozygotes (OR=1.48; 95% CI, 0.91-2.43), Val/Val homozygotes (OR=1.93; 95% CI, 0.51-7.77) and carriers of Val allele genotype (OR=1.53; 95% CI, 0.95-2.45) were not significantly associated with increased breast cancer risk. Similarly, women who were homozygous (OR=1.34; 95% CI, 0.77-2.34) or heterozygous (OR=0.98; 95% CI, 0.60-1.60) for A allele, or carriers of A allele genotype (OR=1.10; 95% CI, 0.70-1.73) were not associated with breast cancer risk. Analysis on clinico-pathological parameters showed that Val allele genotype was significantly correlated with nodal metastases but A allele genotype was not associated with any of the variables. Our findings suggest that the polymorphic alleles of HER2 and CCND1 may not play an important role as genetic markers for breast cancer risk, but presence of Val allele may be useful for tumor prognosis.
Tramadol is metabolized by the highly polymorphic enzyme cytochrome P450 (CYP)2D6. Patients with different CYP2D6 genotypes may respond differently to tramadol in terms of pain relief and adverse events. In this study, we compare the pharmacokinetics and effects of tramadol in Malaysian patients with different genotypes to establish the pharmacokinetic-pharmacodynamic relationship of tramadol.
Mitochondrial DNA sequences of the hypervariable regions HV1 and HV2 were analyzed in 205 unrelated ethnic Malays residing in Singapore as an initial effort to generate a database for forensic identification purposes. Sequence polymorphism was detected using PCR and direct sequencing analysis. A total of 152 haplotypes was found containing 152 polymorphisms. Out of the 152 haplotypes, 115 were observed only once and 37 types were seen in multiple individuals. The most common haplotype (16223T, 16295T, 16362C, 73G, 146C, 199C, 263G, and 315.1C) was shared by 7 (3.41%) individuals, two haplotypes were shared by 4 individuals, seven haplotypes were shared by 3 individuals, and 27 haplotypes by 2 individuals. Haplotype diversity and random match probability were estimated to be 0.9961% and 0.87%, respectively.
The molecular basis of variable phenotypes in P-thalassaemia patients with identical genotypes has been associated with co-inheritance of alpha-thalassaemia and persistence of HbF production in adult life. The Xmn I restriction site at -158 position of the Ggamma-gene is associated with increased expression of the Ggamma-globin gene and higher production of HbF This study aims to determine the frequency of the digammaferent genotypes of the Ggamma Xmn I polymorphism in P-thalassaemia patients in two ethnic groups in Malaysia. Molecular characterisation and frequency of the Ggamma Xmn I polymorphism were studied in fifty-eight Chinese and forty-nine beta-thalassaemia Malay patients by Xmn I digestion after DNA amplification of a 650 bp sequence. The in-house developed technique did not require further purification or concentration of amplified DNA before restriction enzyme digestion. The cheaper Seakem LE agarose was used instead of Nusieve agarose and distinct well separated bands were observed. Genotyping showed that the most frequent genotype observed in the Malaysian Chinese was homozygosity for the absence of the Xmn I site (-/-) (89.7%). In the Malays, heterozygosity of the Xmn I site (+/-) was most common (63.3%). Homozygosity for the Xmn I site (+/+) was absent in the Chinese, but was confirmed in 8.2% of the Malays. The ratio of the (+) allele (presence of the Xmn I site) to the (-) allele (absence of the Xmn I site)) was higher in the Malays (0.66) compared to the Chinese (0.05). The (+/-) and (+/+) genotypes are more commonly observed in the Malays than the Chinese in Malaysia.
The frequency and association of polymorphic Alu insertions (POALINs) with human leucocyte antigen (HLA) class I genes within the class I genomic region of the major histocompatibility complex (MHC) have been reported previously for three populations: the Australian Caucasian, Japanese and north-eastern Thai populations. Here, we report on the individual insertion frequency of the five POALINs within the MHC class I region, their HLA-A and HLA-B associations, the POALIN haplotype frequencies and the HLA-A/POALIN four-loci haplotype frequencies in the Malaysian Chinese population. The phylogenetic relationship of the four populations based on the five POALIN allele frequencies was also examined. In the Malaysian Chinese population, the POALIN AluyHG was present at the highest frequency (0.560), followed by AluyHJ (0.300), AluyMICB (0.170), AluyTF (0.040) and AluyHF (0.030). The most frequent five-loci POALIN haplotype of the 16 inferred haplotypes was the AluyHG single insertion haplotype at a frequency of 0.489. Strong associations were present between AluyHJ and HLA-A24, HLA-A33 and HLA-A11 and between AluyHG and HLA-A2, HLA-A24 and HLA-A11, and these were reflected by the inferred haplotype frequencies constructed from the combination of the HLA-A locus and the AluyHG, AluyHJ and AluyHF loci. The strongest association of AluyMICB was with the HLA-B54 allele (five of five), whereas the associations with the other 17 HLA-B alleles were weak, moderate or undetermined. Phylogenetic analysis of the five POALIN allele frequencies places the Malaysian Chinese closest to the Japanese and north-eastern Thai populations in the same cluster and separate to the Australian Caucasian population. The MHC POALINs are confirmed in this study to be informative genetic markers in lineage (haplotype) analysis, population genetics and evolutionary relationships, especially in studying the MHC genomic region.
MiniSTR loci has demonstrated to be an effective approach to recover genetic information from degraded sample, due to the improved PCR efficiency of their reduced PCR amplicon sizes. This study constructed a partial miniSGM panel and investigated the performance of four miniSTR loci, D2S1338, D16S539, D18S51 and FGA, in three ethnic populations residing in Singapore. The suitability of the miniSTR primers for Singapore populations was assessed for loci D16S539, D18S51 and FGA.
There is a need for country/population-specific databases because the existence of population-specific mutations for single gene disorders is well documented, and there is also good evidence for ethnic differences in the frequencies of genetic variations involved in complex disorders. Thus the Singapore Human Mutation/Polymorphism Database (SHMPD) was created to provide clinicians and scientists access to a central genetic database for the Singapore population. The data catalogued in the database include mutations identified in Singapore for Mendelian diseases, and frequencies of polymorphisms that have been investigated in either healthy controls or samples associated with specific phenotypes. Data from journal articles identified by searches in PubMed and other online resources, and via personal communications with researchers were compiled and assembled into a single database. Genes are categorized alphabetically and are also searchable by name and disease. The information provided for each variant of the gene includes the protein encoded, phenotype association, gender, size, and ethnic origin of the sample, as well as the reported genotype and allele frequencies, and direct links to the corresponding abstracts on PubMed. Our database will facilitate molecular diagnosis of Mendelian disorders and improve study designs for complex traits. It will be useful not only for researchers in Singapore, but also for those in countries with similar ethnic backgrounds, such as China, Taiwan, Hong Kong, Indonesia, and Malaysia.
The etiology of systemic lupus erythematosus (SLE) is unknown but genetic factors seem to play a role in the disease pathogenesis. The tumor necrosis factor alpha (TNFa) gene, encoded at the TNF locus in the MHC class III region, is now known to be an important candidate gene in SLE, due to the proinflammatory activities of the TNFa. The objectives of this study were to examine the role of the TNFa polymorphism for the susceptibility of Malaysian Chinese lupus patients to SLE and to determine its association with organ involvement. The allelic frequencies of the TNFa polymorphic variant (TNF2) of seventy lupus patients were determined during follow-up at the Medical Clinic of the National University Hospital Malaysia by PCR-RFLP technique. Sixty-four females and 6 males with a mean age of 33+/-12 years were included. Clinical data were obtained from case records. Autoantibody levels were measured by ELISA. Fifty-nine ethnically-matched blood donors were used as controls. The allelic frequency of the TNF2 variant was found to be significantly increased in the patients compared to the controls (52.8% vs 33.8%). SLE patients with the polymorphic TNF2 variant were found to be at increased risk of central nervous system involvement (p = 0.004, RR = 2.59) and to have an increased frequency of anti-La antibodies (p = 0.03). In view of these findings we suggest that TNF2 variant is playing a role in conferring susceptibility to SLE and in the disease pathogenesis.
Study site: Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
The risk variants have been shown to vary substantially across populations and a genetic study in a heterogeneous population might shed a new light in the disease mechanism. This preliminary study aims to determine the frequency of the serotonin transporter gene polymorphism (5-HTTLPR) in the three main ethnic groups in Malaysia and its association with bipolar disorder.
The simian malaria parasite Plasmodium knowlesi is now recognized as a species that can cause human malaria. The first report of large scale human knowlesi malaria was in 2004 in Malaysia Borneo. Since then, hundreds of human knowlesi malaria cases have been reported in Southeast Asia. The present study investigates the genetic polymorphism of P. knowlesi DI domain of the apical membrane antigen-1 (AMA-1), a protein considered as a promising vaccine candidate for malaria. The DI domain of AMA-1 gene of P. knowlesi clinical isolates from Peninsular Malaysia was amplified by PCR, cloned into Escherichia coli, then sequenced and analysed. Ninety-seven DI domain sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence showed 21 synonymous and 25 nonsynonymous mutations. Nonetheless, nucleotide sequence analysis revealed low genetic diversity of the DI domain, and it was under purifying (negative) selection. At the amino acid level, 26 different haplotypes were identified and 2 were predominant haplotypes (H1, H2) with high frequencies. Phylogenetic analysis revealed that the 26 haplotypes could be clustered into 2 distinct groups (I and II). Members of the groups were basically derived from haplotypes H1 and H2, respectively.
OBJECTIVE: Interleukin-1 receptor antagonist (IL-1Ra) acts as an inhibitor of IL-1; which is one of the culprit cytokines in rheumatoid arthritis (RA). Although +2018 polymorphism of IL-1Ra has been implicated in the pathogenesis of RA, its importance remains poorly understood. Hence, the purpose of this study was to determine the clinical significance of interleukin-1 receptor antagonist (IL-1Ra) +2018 polymorphism in RA.
METHODS: Polymerase chain reaction (PCR) and sequencing were used to determine the genotypes of the IL-1Ra +2018 for 77 RA patients and 18 healthy controls. All RA patients were assessed for the disease activity score that includes 28 joints (DAS28) and radiographic disease damage based on Modified Sharp Score (MSS).
RESULTS: The frequency of the T/T and C/T genotypes did not differ significantly (p = 0.893) between the RA patients and the controls. The C/T genotype had significantly higher mean disease activity (DAS 28) and disease damage (MSS) scores with p values of 0.017 and 0.004, respectively. Additionally, the ESR (erythrocyte sedimentation rate), CRP (C-reactive protein), the number of swollen and tender joints were higher for the C/T individuals. On multivariate analysis the CRP, swollen joint count and MSS remained significant with the following p values i.e. 0.045, 0.046 and less than 0.05.
CONCLUSIONS: C/T genotype of IL-1Ra +2018 prognosticates more aggressive disease in RA.
Study site: Outpatient clinic, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
Although Malaysian Chinese share an origin with the mainland Chinese, their evolution has been influenced by intermarriages. With a gene such as CYP2D6, which is highly polymorphic, it is expected that the Malaysian Chinese would exhibit a polymorphism profile different from those of the Chinese populations in other geographical locations.
Nine simple sequence repeat (SSR) markers were developed from Shorea curtisii using two different methods. One SSR locus was isolated by the commonly used method of screening by colony hybridization, and the other eight loci were isolated by a vectorette PCR method. Primer pairs were designed based on the sequences of all these SSR loci. Analysis of 40 individuals of S. curtisii from natural forest in Malaysia revealed that all SSR loci were polymorphic. Four SSR markers, Shc01, Shc04, Shc07 and Shc09, were highly polymorphic. We have also tested the applicability of these SSR printers to other species of Dipterocarpaceae using PCR amplification. Because the flanking region sequences of the S. curtisii SSRs were well conserved within this family, the SSR primers for S. curtisii can be applied to almost all species of Dipterocarpaceae.
Vitamin D-binding protein (DBP) of crab-eating macaques (Macaca fascicularis) was examined by means of three electrophoretic methods. DBP phenotypes were observed to be one or two bands in each method. All of DBP molecular variants could be detected by the simultaneous typing with these three methods. Family analysis suggested that DBP variants followed the mode of autosomal codominant inheritance. A total of 17 phenotypes governed by at least 11 alleles were observed in the populations of Malaysia, Indonesia, and the Philippines. The genetic variability was high in Malaysian and Indonesian populations but low in the Philippine population.
The uniparentally inherited mitochondrial DNA (mtDNA) is in the limelight for the past two decades, in studies relating to demographic history of mankind and in forensic kinship testing. In this study, human mtDNA hypervariable segments 1, 2, and 3 (HV1, HV2, and HV3) were analyzed in 248 unrelated Malay individuals in Peninsular Malaysia. Combined analyses of HV1, HV2, and HV3 revealed a total of 180 mtDNA haplotypes with 149 unique haplotypes and 31 haplotypes occurring in more than one individual. The genetic diversity was estimated to be 99.47%, and the probability of any two individuals sharing the same mtDNA haplotype was 0.93%. The most frequent mtDNA haplotype (73, 146, 150, 195, 263, 315.1C, 16140, 16182C, 16183C, 16189, 16217, 16274, and 16335) was shared by 11 (4.44%) individuals. The nucleotide diversity and mean of pair-wise differences were found to be 0.036063 ± 0.020101 and 12.544022 ± 6.230486, respectively.
Control region polymorphisms in the mitochondrial DNA of 124 unrelated individuals from the Malay population living in or around Kuala Lumpur in Malaysia were investigated and phylogenetic haplogroup lineages were determined. The intergenic COII/tRNALys 9-bp deletion, 3010 and 5178 mutations, and several coding region polymorphisms were examined to discriminate some phylogenetic haplogroups. Sequence comparison of the control regions led to the identification of 117 mitochondrial haplotypes, in which 103 types were observed in only one individual and the other nine types were shared by more than two individuals. Gene diversity was estimated to be 0.997. Phylogenetic haplogroup determination revealed that the gene pool of the modern Malay population in Malaysia consisted mainly of southeast Asian, east Asian, unidentified and unique, and aboriginal southeast-specific haplogroups. These results suggest a multi-original nature for the modern Malay population. The present database may help not only in personal identification but also in determining geographic origin in forensic casework in Malaysian, Southeast Asian and East Asian populations.