Displaying publications 81 - 100 of 488 in total

Abstract:
Sort:
  1. Smallbone A, Hanipah MR, Jia B, Scott T, Heslop J, Towell B, et al.
    Energy Fuels, 2020 Oct 15;34(10):12926-12939.
    PMID: 33122874 DOI: 10.1021/acs.energyfuels.0c01647
    Free-piston engine generators (FPEGs) have huge potential to be the principal energy conversion device for generating electricity from fuel as part of a hybrid-electric vehicle (EV) powertrain system. The principal advantages lay in the fact that they are theoretically more efficient, more compact, and more lightweight compared to other competing EV hybrid and range-extender solutions (internal combustion engines, rotary engines, fuel cells, etc.). However, this potential has yet to be realized. This article details a novel dual-piston FPEG configuration and presents the full layout of a system and provides technical evidence of a commercial FPEG system's likely size and weight. The work also presents the first results obtained from a project which set-out to realize an operational FPEG system in hardware through the development and testing of a flexible prototype test platform. The work presents the performance and control system characteristics, for a first of a kind system; these show great technical potential with stable and repeatable combustion events achieved with around 700 W per cylinder and 26% indicated efficiency.
    Matched MeSH terms: Physical Phenomena
  2. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Apr 19;122(15):151802.
    PMID: 31050519 DOI: 10.1103/PhysRevLett.122.151802
    For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3  fb^{-1}, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01×10^{-6} is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.
    Matched MeSH terms: Physical Phenomena
  3. Usang MD, Ivanyuk FA, Ishizuka C, Chiba S
    Sci Rep, 2019 Feb 06;9(1):1525.
    PMID: 30728435 DOI: 10.1038/s41598-018-37993-7
    We have decomposed to symmetric and asymmetric modes the mass-TKE fission fragment distributions calculated by 4-dimensional Langevin approach and observed how the dominant fission mode and symmetric mode change as functions of [Formula: see text] of the fissioning system in the actinides and trans-actinide region. As a result, we found that the symmetric mode makes a sudden transition from super-long to super short fission mode around 254Es. The dominant fission modes on the other hand, are persistently asymmetric except for 258Fm, 259Fm and 260Md when the dominant fission mode suddenly becomes symmetric although it returns to the asymmetric mode around 256No. These correlated "twin transitions" have been known empirically by Darleane Hoffman and her group back in 1989, but for the first time we have given a clear explanation in terms of a dynamical model of nuclear fission. More specifically, since we kept the shape model parameters unchanged over the entire mass region, we conclude that the correlated twin transition emerge naturally from the dynamics in 4-D potential energy surface.
    Matched MeSH terms: Physical Phenomena
  4. Hosen MA, Alengaram UJ, Jumaat MZ, Sulong NHR, Darain KMU
    Polymers (Basel), 2017 May 19;9(5).
    PMID: 30970858 DOI: 10.3390/polym9050180
    Reinforced concrete (RC) structures require strengthening for numerous factors, such as increased load, modification of the structural systems, structural upgrade or errors in the design and construction stages. The side near-surface mounted (SNSM) strengthening technique with glass fiber-reinforced polymer (GFRP) bars is a relatively new emerging technique for enhancing the flexural capacities of existing RC elements. Nine RC rectangular beams were flexurally strengthened with this technique and tested under four-point bending loads until failure. The main goal of this study is to optimize the structural capacity of the RC beams by varying the amount of strengthening reinforcement and bond length. The experimental test results showed that strengthening with SNSM GFRP bars significantly enhanced the flexural responses of the specimens compared with the control specimen. The first cracking and ultimate loads, energy absorption capacities, ductility and stiffness were remarkably enhanced by the SNSM technique. It was also confirmed that the bond length of the strengthened reinforcement greatly influences the energy absorption capacities, ductility and stiffness. The effect of the bond length on these properties is more significant compared to the amount of strengthening reinforcement.
    Matched MeSH terms: Physical Phenomena
  5. Hosen MA, Jumaat MZ, Alengaram UJ, Islam ABMS, Bin Hashim H
    Polymers (Basel), 2016 Mar 03;8(3).
    PMID: 30979167 DOI: 10.3390/polym8030067
    Existing structural components require strengthening after a certain period of time due to increases in service loads, errors in design, mechanical damage, and the need to extend the service period. Externally-bonded reinforcement (EBR) and near-surface mounted (NSM) reinforcement are two preferred strengthening approach. This paper presents a NSM technique incorporating NSM composites, namely steel and carbon fiber-reinforced polymer (CFRP) bars, as reinforcement. Experimental and analytical studies carried out to explore the performance of reinforced concrete (RC) members strengthened with the NSM composites. Analytical models were developed in predicting the maximum crack spacing and width, concrete cover separation failure loads, and deflection. A four-point bending test was applied on beams strengthened with different types and ratios of NSM reinforcement. The failure characteristics, yield, and ultimate capacities, deflection, strain, and cracking behavior of the beams were evaluated based on the experimental output. The test results indicate an increase in the cracking load of 69% and an increase in the ultimate load of 92% compared with the control beam. The predicted result from the analytical model shows good agreement with the experimental result, which ensures the competent implementation of the present NSM-steel and CFRP technique.
    Matched MeSH terms: Physical Phenomena
  6. Jotani MM, Gajera NN, Patel MC, Sung HH, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Oct 1;71(Pt 10):1121-4.
    PMID: 26594387 DOI: 10.1107/S2056989015016023
    The title compound, C17H15N3O2, is a monoclinic polymorph (P21/c with Z' = 1) of the previously reported triclinic (P-1 with Z' = 2) form [Gajera et al. (2013 ▸). Acta Cryst. E69, o736-o737]. The mol-ecule in the monoclinic polymorph features a central pyrazolyl ring with an N-bound p-tolyl group and a C-bound 1,3-benzodioxolyl fused-ring system on either side of the C atom bearing the amino group. The dihedral angles between the central ring and the N- and C-bound rings are 50.06 (5) and 27.27 (5)°, respectively. The angle between the pendent rings is 77.31 (4)°, indicating the mol-ecule has a twisted conformation. The five-membered dioxolyl ring has an envelope conformation with the methyl-ene C atom being the flap. The relative disposition of the amino and dioxolyl substituents is syn. One of the independent mol-ecules in the triclinic form has a similar syn disposition but the other has an anti arrangement of these substituents. In the crystal structure of the monoclinic form, mol-ecules assemble into supra-molecular helical chains via amino-pyrazolyl N-H⋯N hydrogen bonds. These are linked into layers via C-H⋯π inter-actions, and layers stack along the a axis with no specific inter-actions between them.
    Matched MeSH terms: Physical Phenomena; Biophysical Phenomena
  7. Chia TS, Kwong HC, Wong QA, Quah CK, Arafath MA
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):8-11.
    PMID: 30713724 DOI: 10.1107/S2056989018016900
    A new polymorphic form of the title compound, C8H8O3, is described in the centrosymmetric monoclinic space group P21/c with Z' = 1 as compared to the first polymorph, which crystallizes with two conformers (Z' = 2) in the asymmetric unit in the same space group. In the crystal of the second polymorph, inversion dimers linked by O-H⋯O hydrogen bonds occur and these are linked into zigzag chains, propagating along the b-axis direction by C-H⋯O links. The crystal structure also features a weak π-π inter-action, with a centroid-to-centroid distance of 3.8018 (6) Å. The second polymorph of the title compound is less stable than the reported first polymorph, as indicated by its smaller calculated lattice energy.
    Matched MeSH terms: Physical Phenomena
  8. Nur Farahana Pauzi, Zafri Azran Abdul Majid, Wan Muhamad Nasuha Wan Hussin, Abdul Halim Sapuan, Mohd Zulfaezal Che Azemin
    MyJurnal
    X-ray is produced in form of divergent beam. The beam divergence results to blurring effect that influences image diagnosis. Thus, the blurring effect assessment should be enrolled within the quality control (QC) program of an imaging unit.
    Matched MeSH terms: Physical Phenomena
  9. Siti Nur Haseela Izani, Anati Ali
    MATEMATIKA, 2019;35(2):187-200.
    MyJurnal
    The heat and mass transfer of steady magnetohydrodynamics of dusty Jeffrey fluid past an exponentially stretching sheet in the presence of thermal radiation have been investigated. The main purpose of this study is to conduct a detailed analysis of flow behaviour of suspended dust particles in non-Newtonian fluid. The governing equations hav been converted into dimensionless form, and then solved numerically via the Keller-box method. The expression of Sherwood number, Nusselt number and skin friction have been evaluated, and then displayed in tabular forms. Velocity, temperature and concentration profiles are presented graphically. It is observed that large value of dust particles mass concentration parameter has reduced the flow velocity significantly. Increase in radiation parameter enhances the temperature, whereas the increment in Schmidt number parameter reduces the concentration.
    Matched MeSH terms: Physical Phenomena
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Aug 07;125(6):061801.
    PMID: 32845700 DOI: 10.1103/PhysRevLett.125.061801
    The first observation of the tt[over ¯]H process in a single Higgs boson decay channel with the full reconstruction of the final state (H→γγ) is presented, with a significance of 6.6 standard deviations (σ). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2σ. The measurements are based on a sample of proton-proton collisions at a center-of-mass energy sqrt[s]=13  TeV collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137  fb^{-1}. The cross section times branching fraction of the tt[over ¯]H process is measured to be σ_{tt[over ¯]H}B_{γγ}=1.56_{-0.32}^{+0.34}  fb, which is compatible with the standard model prediction of 1.13_{-0.11}^{+0.08}  fb. The fractional contribution of the CP-odd component is measured to be f_{CP}^{Htt}=0.00±0.33.
    Matched MeSH terms: Physical Phenomena
  11. Al-Nini A, Nikbakht E, Syamsir A, Shafiq N, Mohammed BS, Al-Fakih A, et al.
    Materials (Basel), 2020 Jul 09;13(14).
    PMID: 32659956 DOI: 10.3390/ma13143064
    The concrete-filled double skin steel tube (CFDST) is a more viable option compared to a concrete-filled steel tube (CFST) due to consisting a hollow section, while degradation is enhanced simply by using carbon fiber-reinforced polymer (CFRP). Hence, the stabilization of a concrete's ductile strength needs high- performance fiber-reinforced cementitious conmposite. This study investigates the behavior of high-performance fiber-reinforced cementitious composite-filled double-skin steel tube (HPCFDST) beams strengthened longitudinally with various layers, lengths, and configurtion of CFRP sheets. The findings showed that, with increased CFRP layers, the moment capacity and flexural stiffness values of the retrofitted HPCFDST beams have significantly improved. For an instant, the moment capacity of HPCFDST beams improved by approximately 28.5% and 32.6% when they were wrapped partially along 100% with two and three layers, respectively, compared to the control beam. Moreover, the moment capacity of the HPCFDST beam using two partial layers of CFRP along 75% of its sufficient length was closed to the findings of the beam with two full CFRP layers. For energy absorption, the results showed a vast disparity. Only the two layers with a 100% full length and partial wrapping showed increasing performance over the control. Furthermore, the typical failure mode of HPCFDST beams was observed to be local buckling at the top surface near the point of loading and CFRP rapture at the bottom of effect length.
    Matched MeSH terms: Physical Phenomena
  12. Chang YHR
    Chem Commun (Camb), 2020 Sep 17;56(74):10962-10965.
    PMID: 32789397 DOI: 10.1039/d0cc04123h
    While lab-scale synthesis of trigonal-Zr2N2S, hexagonal-Zr2N2S and hexagonal-Zr2N2Se has been reported, meaningful data on the photophysical properties of IV-nitride chalcogenides in general are scarcely available. The first-principles calculations and genetic algorithm modeling in our work reveal the existence of remarkably stable, indirect gap trigonal-Zr2N2Se and trigonal-Hf2N2Se phases, which progress to direct gap, monoclinic materials in monolayer form. These structures display the desired optoelectronic properties, such as exceptionally high visible-UV absorption spectra (105-106 cm-1) and exciton binding energy below 0.02 eV. Strong hybridization between the Zr-d, N-p and Se-p orbitals is accounted for by the polysilicon comparable Vickers hardness (10.64-12.77 GPa), while retaining ductile nature.
    Matched MeSH terms: Physical Phenomena
  13. R Koloor SS, Karimzadeh A, Abdullah MR, Petrů M, Yidris N, Sapuan SM, et al.
    Polymers (Basel), 2021 Jan 22;13(3).
    PMID: 33498984 DOI: 10.3390/polym13030344
    The stiffness response or load-deformation/displacement behavior is the most important mechanical behavior that frequently being utilized for validation of the mathematical-physical models representing the mechanical behavior of solid objects in numerical method, compared to actual experimental data. This numerical study aims to investigate the linear-nonlinear stiffness behavior of carbon fiber-reinforced polymer (CFRP) composites at material and structural levels, and its dependency to the sets of individual/group elastic and damage model parameters. In this regard, a validated constitutive damage model, elastic-damage properties as reference data, and simulation process, that account for elastic, yielding, and damage evolution, are considered in the finite element model development process. The linear-nonlinear stiffness responses of four cases are examined, including a unidirectional CFRP composite laminate (material level) under tensile load, and also three multidirectional composite structures under flexural loads. The result indicated a direct dependency of the stiffness response at the material level to the elastic properties. However, the stiffness behavior of the composite structures depends both on the structural configuration, geometry, lay-ups as well as the mechanical properties of the CFRP composite. The value of maximum reaction force and displacement of the composite structures, as well as the nonlinear response of the structures are highly dependent not only to the mechanical properties, but also to the geometry and the configuration of the structures.
    Matched MeSH terms: Physical Phenomena
  14. Azizan A, Johar M, Karam Singh SS, Abdullah S, Koloor SSR, Petrů M, et al.
    Polymers (Basel), 2021 Jan 30;13(3).
    PMID: 33573112 DOI: 10.3390/polym13030440
    Moisture absorption tests for materials that exhibit non-Fickian behavior generally require a relatively long period to reach saturation. Therefore, it would be beneficial to establish a relationship between the moisture content and the thickness to minimize the experimental time and cost. This research characterizes the moisture absorption behavior of AS4/8552 carbon/epoxy composites. Specimens were prepared at 4, 8, and 16 plies and immersed in distilled water at 60 °C. The relationship between the non-Fickian parameters (Fickian to non-Fickian maximum moisture content ratio ϕ, non-Fickian diffusivity per square thickness α, and non-Fickian initiation time to) and thickness was characterized using a thickness-dependent model. A comparison with other materials revealed that all three non-Fickian parameters are able to be fitted using a power law. Nevertheless, the upper boundary for the applicability of this model was not determined in this study. The Weibull distribution plots indicate that the probability of non-Fickian moisture absorption is influenced by ϕ and α at approximately 62% within a normalized thickness range of 2-3. In regards to to, it is 82% at a normalized thickness of 6. Therefore, the Weibull distribution is proposed for the assessment of non-Fickian moisture absorption based on the material's thickness.
    Matched MeSH terms: Physical Phenomena
  15. Lee CH, Khalina A, Lee SH
    Polymers (Basel), 2021 Jan 29;13(3).
    PMID: 33573036 DOI: 10.3390/polym13030438
    Plant fibers have become a highly sought-after material in the recent days as a result of raising environmental awareness and the realization of harmful effects imposed by synthetic fibers. Natural plant fibers have been widely used as fillers in fabricating plant-fibers-reinforced polymer composites. However, owing to the completely opposite nature of the plant fibers and polymer matrix, treatment is often required to enhance the compatibility between these two materials. Interfacial adhesion mechanisms are among the most influential yet seldom discussed factors that affect the physical, mechanical, and thermal properties of the plant-fibers-reinforced polymer composites. Therefore, this review paper expounds the importance of interfacial adhesion condition on the properties of plant-fiber-reinforced polymer composites. The advantages and disadvantages of natural plant fibers are discussed. Four important interface mechanism, namely interdiffusion, electrostatic adhesion, chemical adhesion, and mechanical interlocking are highlighted. In addition, quantifying and analysis techniques of interfacial adhesion condition is demonstrated. Lastly, the importance of interfacial adhesion condition on the performances of the plant fiber polymer composites performances is discussed. It can be seen that the physical and thermal properties as well as flexural strength of the composites are highly dependent on the interfacial adhesion condition.
    Matched MeSH terms: Physical Phenomena
  16. Rahman EU, Zhang Y, Ahmad S, Ahmad HI, Jobaer S
    Sensors (Basel), 2021 Feb 02;21(3).
    PMID: 33540500 DOI: 10.3390/s21030974
    The early detection of damaged (partially broken) outdoor insulators in primary distribution systems is of paramount importance for continuous electricity supply and public safety. Unmanned aerial vehicles (UAVs) present a safer, autonomous, and efficient way to examine the power system components without closing the power distribution system. In this work, a novel dataset is designed by capturing real images using UAVs and manually generated images collected to overcome the data insufficiency problem. A deep Laplacian pyramid-based super-resolution network is implemented to reconstruct high-resolution training images. To improve the visibility of low-light images, a low-light image enhancement technique is used for the robust exposure correction of the training images. A different fine-tuning strategy is implemented for fine-tuning the object detection model to increase detection accuracy for the specific faulty insulators. Several flight path strategies are proposed to overcome the shuttering effect of insulators, along with providing a less complex and time- and energy-efficient approach for capturing a video stream of the power system components. The performance of different object detection models is presented for selecting the most suitable one for fine-tuning on the specific faulty insulator dataset. For the detection of damaged insulators, our proposed method achieved an F1-score of 0.81 and 0.77 on two different datasets and presents a simple and more efficient flight strategy. Our approach is based on real aerial inspection of in-service porcelain insulators by extensive evaluation of several video sequences showing robust fault recognition and diagnostic capabilities. Our approach is demonstrated on data acquired by a drone in Swat, Pakistan.
    Matched MeSH terms: Physical Phenomena
  17. Ahamed E, Faruque MRI, Alam MJ, Mansor MFB, Islam MT
    Sci Rep, 2020 Feb 24;10(1):3289.
    PMID: 32094436 DOI: 10.1038/s41598-020-60170-8
    A new approach to controlling the flow of a plasmatic electron packet at the interface between metallic and dielectric layers is described. The proposed metamaterial structure operates in the optical frequency range and can be used as a digital processing filter. It exhibits two double negative resonances and one special passband region, while the existence of a metal-dielectric nano-tunnel enhances electromagnetic wave-metal interactions. The structural arrangement of this metamaterial coupled with the tunnel layer can effectively control the electric field and allows digital encoding of electron packets.
    Matched MeSH terms: Physical Phenomena
  18. Jan S, Yafi E, Hafeez A, Khatana HW, Hussain S, Akhtar R, et al.
    Sensors (Basel), 2021 Apr 25;21(9).
    PMID: 33922886 DOI: 10.3390/s21093000
    A significant increase has been observed in the use of Underwater Wireless Sensor Networks (UWSNs) over the last few decades. However, there exist several associated challenges with UWSNs, mainly due to the nodes' mobility, increased propagation delay, limited bandwidth, packet duplication, void holes, and Doppler/multi-path effects. To address these challenges, we propose a protocol named "An Efficient Routing Protocol based on Master-Slave Architecture for Underwater Wireless Sensor Network (ERPMSA-UWSN)" that significantly contributes to optimizing energy consumption and data packet's long-term survival. We adopt an innovative approach based on the master-slave architecture, which results in limiting the forwarders of the data packet by restricting the transmission through master nodes only. In this protocol, we suppress nodes from data packet reception except the master nodes. We perform extensive simulation and demonstrate that our proposed protocol is delay-tolerant and energy-efficient. We achieve an improvement of 13% on energy tax and 4.8% on Packet Delivery Ratio (PDR), over the state-of-the-art protocol.
    Matched MeSH terms: Physical Phenomena
  19. Tay BA
    Phys Rev E, 2021 Apr;103(4-1):042124.
    PMID: 34005972 DOI: 10.1103/PhysRevE.103.042124
    We consider the reduced dynamics of a molecular chain weakly coupled to a phonon bath. With a small and constant inhomogeneity in the coupling, the excitation relaxation rates are obtained in closed form. They are dominated by transitions between exciton modes lying next to each other in the energy spectrum. The rates are quadratic in the number of sites in a long chain. Consequently, the evolution of site occupation numbers exhibits longer coherence lifetime for short chains only. When external source and sink are added, the rate equations of exciton occupation numbers are similar to those obtained earlier by Fröhlich to explain energy storage and energy transfer in biological systems. There is a clear separation of timescale into a faster one pertaining to internal influence of the chain and phonon bath, and a slower one determined by external influence, such as the pumping rate of the source, the absorption rate of the sink, and the rate of radiation loss. The energy transfer efficiency at steady state depends strongly on these external parameters and is robust against a change in the internal parameters, such as temperature and inhomogeneity. Excitations are predicted to concentrate to the lowest energy mode when the source power is sufficiently high. In the site basis, this implies that when sustained by a high power source, a sink positioned at the center of the chain is more efficient in trapping energy than a sink placed at its end. Analytic expressions of energy transfer efficiency are obtained in the high power and low-power source limit. Parameters of a photosynthetic system are used as examples to illustrate the results.
    Matched MeSH terms: Physical Phenomena
  20. Tan WK, Muto H, Ito T, Kawamura G, Lockman Z, Matsuda A
    J Nanosci Nanotechnol, 2020 Jan 01;20(1):359-366.
    PMID: 31383179 DOI: 10.1166/jnn.2020.17223
    Novel decoration of high aspect ratio zinc oxide nanowires (ZnO NWs) with noble metals such as Ag and Au nanoparticles (NPs) was demonstrated in this work. A facile method of chemical deposition with good controllability, as well as good homogeneity would be a huge advantage towards large scale fabrication. The highlight of this work is the feasibility of multiple component decoration such as a hybrid (co-exist) Ag-Au NPs decorated ZnO NWs formation that could be beneficial towards the development of nanoarchitectured materials with the most desired properties. The local surface plasmon effect (LSPR) of Ag and Au NPs were confirmed using extinction spectra and significant photoelectrochemical conversion efficiency (PCE) enhancement of dye-sensitized solar cells (DSSCs) was achieved. The Ag-NPs and hybrid Ag-Au NPs decorated ZnO NWs marked an impressive 125 and 240% efficiency improvement against pure ZnO NWs. The improved dye light extinction resulted from the LSPR effect that had enabled greater electron generation leading to improved PCE. As the complex design of oxides' nanoarchitectures have reached a point of saturation, this novel method would enable further enhancement in their photoelectrochemical properties through decoration with noble metals via a simple chemical deposition route.
    Matched MeSH terms: Physical Phenomena
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links