Displaying publications 81 - 100 of 606 in total

Abstract:
Sort:
  1. Kuppusamy P, Ichwan SJ, Al-Zikri PN, Suriyah WH, Soundharrajan I, Govindan N, et al.
    Biol Trace Elem Res, 2016 Oct;173(2):297-305.
    PMID: 26961292 DOI: 10.1007/s12011-016-0666-7
    Recently, metal nanoparticles have been getting great medical and social interests due to their potential physico-chemical properties such as higher affinity, low molecular weight, and larger surface area. The biosynthesized gold and silver nanoparticles are spherical, triangular in shape with an average size of 24-150 nm as reported in our earlier studies. The biological properties of synthesized gold and silver nanoparticles are demonstrated in this paper. The different in vitro assays such as MTT, flow cytometry, and reverse transcription polymerase chain reaction (RT-qPCR) techniques were used to evaluate the in vitro anticancer properties of synthesized metal nanoparticles. The biosynthesized gold and silver nanoparticles have shown reduced cell viability and increased cytotoxicity in HCT-116 colon cancer cells with IC50 concentration of 200 and 100 μg/ml, respectively. The flow cytometry experiments revealed that the IC50 concentrations of gold and silver nanoparticle-treated cells that have significant changes were observed in the sub-G1 cell cycle phase compared with the positive control. Additionally, the relative messenger RNA (mRNA) gene expressions of HCT-116 cells were studied by RT-qPCR techniques. The pro-apoptotic genes such as PUMA (++), Caspase-3 (+), Caspase-8 (++), and Caspase-9 (++) were upregulated in the treated HCT-116 cells compared with cisplatin. Overall, these findings have proved that the synthesized gold and silver nanoparticles could be potent anti-colon cancer drugs.
    Matched MeSH terms: Colonic Neoplasms/metabolism
  2. Liew KL, Jee JM, Yap I, Yong PV
    PLoS One, 2016;11(4):e0153356.
    PMID: 27054608 DOI: 10.1371/journal.pone.0153356
    Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection.
    Matched MeSH terms: Lung Neoplasms/metabolism*
  3. Housseau F, Wu S, Wick EC, Fan H, Wu X, Llosa NJ, et al.
    Cancer Res, 2016 04 15;76(8):2115-24.
    PMID: 26880802 DOI: 10.1158/0008-5472.CAN-15-0749
    IL17-producing Th17 cells, generated through a STAT3-dependent mechanism, have been shown to promote carcinogenesis in many systems, including microbe-driven colon cancer. Additional sources of IL17, such as γδ T cells, become available under inflammatory conditions, but their contributions to cancer development are unclear. In this study, we modeled Th17-driven colon tumorigenesis by colonizing Min(Ap) (c+/-) mice with the human gut bacterium, enterotoxigenic Bacteroides fragilis (ETBF), to investigate the link between inflammation and colorectal cancer. We found that ablating Th17 cells by knocking out Stat3 in CD4(+) T cells delayed tumorigenesis, but failed to suppress the eventual formation of colonic tumors. However, IL17 blockade significantly attenuated tumor formation, indicating a critical requirement for IL17 in tumorigenesis, but from a source other than Th17 cells. Notably, genetic ablation of γδ T cells in ETBF-colonized Th17-deficient Min mice prevented the late emergence of colonic tumors. Taken together, these findings support a redundant role for adaptive Th17 cell- and innate γδT17 cell-derived IL17 in bacteria-induced colon carcinogenesis, stressing the importance of therapeutically targeting the cytokine itself rather than its cellular sources. Cancer Res; 76(8); 2115-24. ©2016 AACR.
    Matched MeSH terms: Colonic Neoplasms/metabolism
  4. Jennings CJ, Murer B, O'Grady A, Hearn LM, Harvey BJ, Kay EW, et al.
    Br. J. Cancer, 2015 Jun 30;113(1):69-75.
    PMID: 26057448 DOI: 10.1038/bjc.2015.187
    Malignant pleural mesothelioma (MPM) is a rare and essentially incurable malignancy most often linked with occupational exposure to asbestos fibres. In common with other malignancies, the development and progression of MPM is associated with extensive dysregulation of cell cycle checkpoint proteins that modulate cell proliferation, apoptosis, DNA repair and senescence.
    Matched MeSH terms: Pleural Neoplasms/metabolism
  5. Sasongko TH, Ismail NF, Nik Abdul Malik NM, Zabidi-Hussin ZA
    Orphanet J Rare Dis, 2015;10:95.
    PMID: 26259610 DOI: 10.1186/s13023-015-0317-7
    Rapamycin has gained significant attention for its potential activity in reducing the size of TSC-associated tumors, thus providing alternative to surgery. This study aimed at determining the efficacy of rapamycin and rapalogs for reducing the size of TSC-associated solid tumors in patients with Tuberous Sclerosis Complex (TSC).
    Matched MeSH terms: Neoplasms/metabolism
  6. Looi LM, Cheah PL
    Malays J Pathol, 1998 Jun;20(1):19-23.
    PMID: 10879259
    Eighty-six infiltrating ductal carcinoma of breast were studied by the standard avidin-biotin complex immunoperoxidase method on formalin-fixed, paraffin-embedded tissue sections, for oestrogen receptor (ER) protein and c-erbB-2 oncoprotein expression. They were categorized according to the modified Bloom and Richardson criteria into three histological grades. 21% tumours were ER positive while 44% were c-erbB-2 positive. Of ER positive tumours, 33.3% were c-erbB-2 positive whereas the c-erbB-2 positivity rate was much higher (47.1%) in ER negative tumours. Only 16% of c-erbB-2 positive tumours were ER positive while 25% of c-erbB-2 negative tumours were ER positive. This negative relationship between ER and c-erbB-2 expression was statistically significant (Mc Nemar's test, p < 0.005). The ER positivity rate did not vary significantly with histological grade. However, c-erbB-2 overexpression was significantly more prevalent in grade III tumours compared with grade I and II tumours (Chi-square test, p < 0.005). Since the c-erbB-2 oncogene has extensive structural homology to the epidermal growth factor receptor (EGFR) gene, we expect that c-erbB-2 oncoprotein would share functional similarities with EGFR leading to both loss of oestrogen receptor and poor prognosis in breast cancer. Its overexpression can be expected to relate to more aggressive tumour proliferation and may explain its correlation with high histological grade, a known indicator of aggressive cancer behaviour. As there is no indication that ER protein activity contributes to advancement in histological grade, it would appear that cellular dedifferentiation precedes ER loss during malignant transformation. It has been mooted that ER positive breast cancers which also show c-erbB-2 oncoprotein overexpression have a poorer response to hormonal therapy. The use of this parameter in the routine assessment of breast cancer patients may identify subsets of patients for more aggressive therapy.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  7. Rajab E, Akmal SN, Nasir AM
    J Laryngol Otol, 1994 Aug;108(8):716-8.
    PMID: 7930932
    The case of a minor salivary gland tumour, arising from the tongue, with nodal metastasis is presented. Biopsy of the tumour and fine-needle aspiration cytology of the neck swelling showed the presence of a clear cell carcinoma with evidence of nodal metastases. A commando operation was performed and the defect was reconstructed using a local tongue flap. The literature review indicated that the neoplasm was rare and its site of occurrence rather unusual.
    Matched MeSH terms: Tongue Neoplasms/metabolism*
  8. Looi LM, Cheah PL, Yap SF
    Malays J Pathol, 1997 Jun;19(1):35-9.
    PMID: 10879240
    One hundred and twelve infiltrating ductal carcinoma of breast were studied by the standard avidinbiotin complex immunoperoxidase method on formalin-fixed, paraffin-embedded tissue sections, using a monoclonal antibody to c-erbB-2 oncoprotein. The same tumours were assessed and scored according to the Bloom and Richardson criteria into three histological grades. The distribution of tumours according to grade were: 8 Grade I, 34 Grade II and 70 Grade III. Forty-three (38.4%) tumours showed positive membrane staining for c-erbB-2 oncoprotein. These comprised 7 Grade II and 36 Grade III tumours with c-erbB-2 immunopositivity rates of 20.6% and 51.4% respectively. The oncoprotein was not expressed by Grade I tumours. This study shows a good correlation between c-erbB-2 expression and histological grade, a known prognostic indicator of invasive breast carcinoma. Because the c-erbB-2 oncogene has extensive structural homology to the epidermal growth factor receptor gene, its overexpression can be expected to result in more aggressive tumour behaviour. While it may be regarded as another indicator of poor prognosis breast cancers, its value in the selection of carcinomas less responsive to hormonal therapy and those more suitable for immunotherapy than chemotherapy has been mooted but remains to be clarified.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  9. Omar E, Othman NH
    Med J Malaysia, 2003 Aug;58(3):461-2.
    PMID: 14750392
    Matched MeSH terms: Thyroid Neoplasms/metabolism*
  10. Seow P, Narayanan V, Hernowo AT, Wong JHD, Ramli N
    Neuroimage Clin, 2018;20:531-536.
    PMID: 30167373 DOI: 10.1016/j.nicl.2018.08.003
    Objectives: This study maps the lipid distributions based on magnetic resonance imaging (MRI) in-and opposed-phase (IOP) sequence and correlates the findings generated from lipid map to histological grading of glioma.

    Methods: Forty histologically proven glioma patients underwent a standard MRI tumour protocol with the addition of IOP sequence. The regions of tumour (solid enhancing, solid non-enhancing, and cystic regions) were delineated using snake model (ITK-SNAP) with reference to structural and diffusion MRI images. The lipid distribution map was constructed based on signal loss ratio (SLR) obtained from the IOP imaging. The mean SLR values of the regions were computed and compared across the different glioma grades.

    Results: The solid enhancing region of glioma had the highest SLR for both Grade II and III. The mean SLR of solid non-enhancing region of tumour demonstrated statistically significant difference between the WHO grades (grades II, III & IV) (mean SLRII = 0.04, mean SLRIII = 0.06, mean SLRIV = 0.08, & p 

    Matched MeSH terms: Brain Neoplasms/metabolism
  11. Eshkoor SA, Ismail P, Rahman SA, Oshkour SA
    Arch Med Res, 2008 Oct;39(7):668-73.
    PMID: 18760195 DOI: 10.1016/j.arcmed.2008.06.003
    Basal cell carcinoma (BCC) develops predominantly in sun-exposed skin in fair-skinned individuals prone to sunburn. BCC typically occurs in adults. High exposure to ultraviolet (UV) radiation increases rate of developing BCC, a slowly growing tumor that occurs in hair-growing squamous epithelium and rarely metastasizes. In genetic studies, BCC patients have cell-cycle abnormalities of different parts of the signaling pathway. Retinoblastoma regulatory pathway is important in cell cycle arrest. In this pathway, p16INK4a, an inhibitor of Rb pathway, binds to CDK4 and CDK6 competitively with cyclin D1 to prevent phosphorylation of tumor suppressor pRB gene. Alteration of this pathway contributes to development of human cancers and also is effective in skin cancers. In this study, we analyzed mRNA expression using in situ RT-PCR and the role of immunohistochemical expression of p16INK4a in BCC.
    Matched MeSH terms: Skin Neoplasms/metabolism
  12. Lee PY, Low TY, Jamal R
    Adv Clin Chem, 2018 12 27;88:67-89.
    PMID: 30612607 DOI: 10.1016/bs.acc.2018.10.004
    The life span of cancer patients can be prolonged with appropriate therapies if detected early. Mass screening for early detection of cancer, however, requires sensitive and specific biomarkers obtainable from body fluids such as blood or urine. To date, most biomarker discovery programs focus on the proteome rather than the endogenous peptidome. It has been long-established that tumor cells and stromal cells produce tumor resident proteases (TRPs) to remodel the surrounding tumor microenvironment in support of tumor progression. In fact, proteolytic products of TRPs have been shown to correlate with malignant behavior. Being of low molecular weight, these unique peptides can pass through the endothelial barrier of the vasculature into the bloodstream. As such, the cancer peptidome has increasingly become a focus for biomarker discovery. In this review, we discuss on the various aspects of the peptidome in cancer biomarker research.
    Matched MeSH terms: Neoplasms/metabolism
  13. Mohtarrudin N, Ghazali R, Md Roduan MR
    Malays J Pathol, 2018 Dec;40(3):313-318.
    PMID: 30580362
    INTRODUCTION: Cyclooxygenase-2 (COX-2) promotes carcinogenesis by inducing proliferation and angiogenesis while decreasing apoptosis and immunosuppressive activity. It is overexpressed in many malignancies including renal cell carcinoma (RCC). The aim of this study was to investigate COX-2 expression in clear cell RCC and its association with tumour grades and demographic parameters.

    MATERIALS AND METHODS: Thirty-six clear cell RCC cases were selected. There were 21 (58.3%) men and 15 (41.7%) women with median age of 56.6 years (range: 16-74 years). Chinese constituted 16 (44.4%) of the cases; Malays 14 (38.9%) cases and Indian 6 (16.7%) cases. There were 6 (16.7%) grade 1, 20 (55.6%) grade 2, 10 (27.8%) grade 3 and none was grade 4. The paraffin embedded tissues were cut at 4 μm thick and stained with COX-2 monoclonal antibody.

    RESULTS: Eighteen (50%) of the RCC cases were immunopositive, of which all showed strong positivity. The immunopositive cases showed cytoplasmic membrane positivity.

    CONCLUSION: There was no significant association between COX-2 expression with grade, age, sex and ethnicity (p=0.457, p=0.054, p=0.389 and p=0.568 respectively). Strong positivity of COX-2 suggest that COX-2 may play a role in cell proliferation and in carcinogenesis.

    Matched MeSH terms: Kidney Neoplasms/metabolism*
  14. Lee ECS, Elhassan SAM, Lim GPL, Kok WH, Tan SW, Leong EN, et al.
    Biomed Pharmacother, 2019 Mar;111:198-208.
    PMID: 30583227 DOI: 10.1016/j.biopha.2018.12.052
    For many years, circular ribonucleic acids (circRNAs) have been counted as aberrant splicing by-products. Advanced bioinformatics analysis and deep sequencing techniques have allowed researchers to discover more interesting facts about circRNAs. Intriguing evidence has shed light on the functions of circRNAs in many tissues. Furthermore, emerging reports showed that circRNAs are found abundantly in saliva and blood samples, suggesting that circRNAs are potential clinical biomarkers for human embryonic development, diseases progression and prognosis, in addition to its role in organogenesis and pathogenesis. The implementation of circRNAs in human developmental stages and diseases would be a tremendous discovery in the science and medical field. Therefore, circRNAs have been studied for its biological function as well as its implication in various human diseases. The aim of this review is to highlight the importance of circRNAs in cardiac, respiratory, nervous, endocrine and digestive systems. In addition, the role and impact of circRNAs in, cardiogenesis, neurogenesis and cancer have been discussed.
    Matched MeSH terms: Neoplasms/metabolism
  15. Abdelzaher E, Elwany A, Amr SA
    Malays J Pathol, 2018 Dec;40(3):355-358.
    PMID: 30580369
    Malignant peripheral nerve sheath tumour (MPNST) with perineurial differentiation is a rare variant of MPNST. The pathological features and clinical significance of this variant remain to be characterised. We reported the clinicoradiological and pathological features of a case of recurrent right arm mass related to the ulnar nerve in a 42-year-old female patient. On pathological examination, the tumour showed dual features of conventional and perineurial MPNST which was proven by positive immunostaining for S-100 and EMA. The pathological diagnosis was MPNST with perineurial differentiation. In addition, a peculiar and rare finding of intracytoplasmic eosinophilic hyaline globules (thanatosomes) within tumour cells is reported. We document a rare tumour with hybrid features between conventional and perineurial MPNSTs. Further studies are needed to establish its biological behaviour.
    Matched MeSH terms: Soft Tissue Neoplasms/metabolism
  16. Ganesan T, Sinniah A, Ibrahim ZA, Chik Z, Alshawsh MA
    Molecules, 2020 Aug 14;25(16).
    PMID: 32823805 DOI: 10.3390/molecules25163700
    Annexin A1 has been extensively investigated as an anti-inflammatory protein, but its role in different types of cancer has not been consolidated in a single systematic review to date. Thus, the aim of this paper is to systematically review and critically analyse 18 studies (in-vivo and in-vitro) to consolidate, in a concerted manner, all the information on differential expression of Annexin A1 in different types of cancer and the role this protein plays in tumorigenesis. Pubmed, Scopus, Web of Science, and ScienceDirect were used for the literature search and the keywords used are "annexin A1," "lipocortin 1," "cancer," "malignancy," "neoplasm," "neoplasia," and "tumor." A total of 1128 articles were retrieved by implementing a standard search strategy subjected to meticulous screening processes and 442 articles were selected for full article screening. A total of 18 articles that adhered to the inclusion criteria were included in the systematic review and these articles possessed low to moderate bias. These studies showed a strong correlation between Annexin A1 expression and cancer progression via modulation of various cancer-associated pathways. Differential expression of Annexin A1 is shown to play a role in cellular proliferation, metastasis, lymphatic invasion, and development of resistance to anti-cancer treatment. Meta-analysis in the future may provide a statistically driven association between Annexin A1 expression and malignancy progression.
    Matched MeSH terms: Neoplasms/metabolism
  17. Abidin SAZ, Othman I, Naidu R
    Methods Mol Biol, 2021;2211:233-240.
    PMID: 33336281 DOI: 10.1007/978-1-0716-0943-9_16
    Shotgun proteomics has been widely applied to study proteins in complex biological samples. Combination of high-performance liquid chromatography with mass spectrometry has allowed for comprehensive protein analysis with high resolution, sensitivity, and mass accuracy. Prior to mass spectrometry analysis, proteins are extracted from biological samples and subjected to in-solution trypsin digestion. The digested proteins are subjected for clean-up and injected into the liquid chromatography-mass spectrometry system for peptide mass identification. Protein identification is performed by analyzing the mass spectrometry data on a protein search engine software such as PEAKS studio loaded with protein database for the species of interest. Results such as protein score, protein coverage, number of peptides, and unique peptides identified will be obtained and can be used to determine proteins identified with high confidence. This method can be applied to understand the proteomic changes or profile brought by bio-carrier-based therapeutics in vitro. In this chapter, we describe methods in which proteins can be extracted for proteomic analysis using a shotgun approach. The chapter outlines important in vitro techniques and data analysis that can be applied to investigate the proteome dynamics.
    Matched MeSH terms: Neoplasms/metabolism*
  18. Patmanathan SN, Wang W, Yap LF, Herr DR, Paterson IC
    Cell Signal, 2017 06;34:66-75.
    PMID: 28302566 DOI: 10.1016/j.cellsig.2017.03.002
    S1P is a small bioactive lipid which exerts its effects following binding to a family of five G protein-coupled receptors, known as S1P1-5. Following receptor activation, multiple signalling cascades are activated, allowing S1P to regulate a range of cellular processes, such as proliferation, apoptosis, migration and angiogenesis. There is strong evidence implicating the involvement of S1P receptors (S1PRs) in cancer progression and the oncogenic effects of S1P can result from alterations in the expression of one or more of the S1PRs and/or the enzymes that regulate the levels of S1P. However, cooperativity between the individual S1PRs, functional interactions with receptor tyrosine kinases and the sub-cellular localisation of the S1PRs within tumour cells also appear to play a role in mediating the effects of S1PR signalling during carcinogenesis. Here we review what is known regarding the role of individual S1PRs in cancer and discuss the recent evidence to suggest cross-talk between the S1PRs and other cellular signalling pathways in cancer. We will also discuss the therapeutic potential of targeting the S1PRs and their downstream signalling pathways for the treatment of cancer.
    Matched MeSH terms: Neoplasms/metabolism
  19. Pang SW, Lahiri C, Poh CL, Tan KO
    Cell Signal, 2018 05;45:54-62.
    PMID: 29378289 DOI: 10.1016/j.cellsig.2018.01.022
    Paraneoplastic Ma Family (PNMA) comprises a growing number of family members which share relatively conserved protein sequences encoded by the human genome and is localized to several human chromosomes, including the X-chromosome. Based on sequence analysis, PNMA family members share sequence homology to the Gag protein of LTR retrotransposon, and several family members with aberrant protein expressions have been reported to be closely associated with the human Paraneoplastic Disorder (PND). In addition, gene mutations of specific members of PNMA family are known to be associated with human mental retardation or 3-M syndrome consisting of restrictive post-natal growth or dwarfism, and development of skeletal abnormalities. Other than sequence homology, the physiological function of many members in this family remains unclear. However, several members of this family have been characterized, including cell signalling events mediated by these proteins that are associated with apoptosis, and cancer in different cell types. Furthermore, while certain PNMA family members show restricted gene expression in the human brain and testis, other PNMA family members exhibit broader gene expression or preferential and selective protein interaction profiles, suggesting functional divergence within the family. Functional analysis of some members of this family have identified protein domains that are required for subcellular localization, protein-protein interactions, and cell signalling events which are the focus of this review paper.
    Matched MeSH terms: Neoplasms/metabolism*
  20. Kwong SC, Jamil AHA, Rhodes A, Taib NA, Chung I
    J Lipid Res, 2019 11;60(11):1807-1817.
    PMID: 31484694 DOI: 10.1194/jlr.M092379
    Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, partly due to the lack of targeted therapy available. Cancer cells heavily reprogram their metabolism and acquire metabolic plasticity to satisfy the high-energy demand due to uncontrolled proliferation. Accumulating evidence shows that deregulated lipid metabolism affects cancer cell survival, and therefore we sought to understand the function of fatty acid binding protein 7 (FABP7), which is expressed predominantly in TNBC tissues. As FABP7 was not detected in the TNBC cell lines tested, Hs578T and MDA-MB-231 cells were transduced with lentiviral particles containing either FABP7 open reading frame or red fluorescent protein. During serum starvation, when lipids were significantly reduced, FABP7 decreased the viability of Hs578T, but not of MDA-MB-231, cells. FABP7-overexpressing Hs578T (Hs-FABP7) cells failed to efficiently utilize other available bioenergetic substrates such as glucose to sustain ATP production, which led to S/G2 phase arrest and cell death. We further showed that this metabolic phenotype was mediated by PPAR-α signaling, despite the lack of fatty acids in culture media, as Hs-FABP7 cells attempted to survive. This study provides imperative evidence of metabolic vulnerabilities driven by FABP7 via PPAR-α signaling.
    Matched MeSH terms: Triple Negative Breast Neoplasms/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links