Displaying publications 81 - 91 of 91 in total

Abstract:
Sort:
  1. Kondo T, Nishimura S, Tani N, Ng KK, Lee SL, Muhammad N, et al.
    Am J Bot, 2016 Nov;103(11):1912-1920.
    PMID: 27797714
    PREMISE OF THE STUDY: In tropical rainforests of Southeast Asia, a highly fecund thrips (Thrips spp.) responds rapidly to the mass flowering at multiple-year intervals characteristic of certain species such as the canopy tree studied here, Shorea acuminata, by feeding on flower resources. However, past DNA analyses of pollen adherent to thrips bodies revealed that the thrips promoted a very high level of self-pollination. Here, we identified the pollinator that contributes to cross-pollination and discuss ways that the pollination system has adapted to mass flowering.

    METHODS: By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination.

    KEY RESULTS: The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips.

    CONCLUSIONS: During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata.

    Matched MeSH terms: Microsatellite Repeats/genetics
  2. Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, et al.
    Sci Rep, 2019 Feb 28;9(1):3047.
    PMID: 30816255 DOI: 10.1038/s41598-019-39944-2
    Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.
    Matched MeSH terms: Microsatellite Repeats/genetics*
  3. Abdullah N, Rafii Yusop M, Ithnin M, Saleh G, Latif MA
    C. R. Biol., 2011 Apr;334(4):290-9.
    PMID: 21513898 DOI: 10.1016/j.crvi.2011.01.004
    Studies were conducted to assess the genetic relationships between the parental palms (dura and pisifera) and performance of their progenies based on nine microsatellite markers and 29 quantitative traits. Correlation analyses between genetic distances and hybrids performance were estimated. The coefficients of correlation values of genetic distances with hybrid performance were non-significant, except for mean nut weight and leaf number. However, the correlation coefficient of genetic distances with these characters was low to be used as predicted value. These results indicated that genetic distances based on the microsatellite markers may not be useful for predicting hybrid performance. The genetic distance analysis using UPGMA clustering system generated 5 genetic clusters with coefficient of 1.26 based on quantitative traits of progenies. The genotypes, DP16, DP14, DP4, DP13, DP12, DP15, DP8, DP1 and DP2 belonging to distant clusters and greater genetic distances could be selected for further breeding programs.
    Matched MeSH terms: Microsatellite Repeats/genetics
  4. Lai MI, Garner C, Jiang J, Silver N, Best S, Menzel S, et al.
    Twin Res Hum Genet, 2010 Dec;13(6):567-72.
    PMID: 21142933 DOI: 10.1375/twin.13.6.567
    Cytotoxic precipitation of free α-globin monomers and its production of reactive oxygen species cause red cell membrane damage that leads to anemia and eventually ineffective erythropoiesis in β-thalassemia. Alpha hemoglobin stabilizing protein (AHSP) was found to bind only to free α-globin monomers creating a stable and inert complex which remains soluble in the cytoplasm thus preventing harmful precipitations. Alpha hemoglobin stabilizing protein was shown to bind nascent α-globin monomers with transient strength before transferring α-globin to β-globin to form hemoglobin tetramer. A classical twin study would be beneficial to investigate the role of genetics and environment in the variation of alpha hemoglobin stabilizing protein expression as this knowledge will enable us to determine further investigations with regards to therapeutic interventions if alpha hemoglobin stabilizing protein is to be a therapeutic agent for β-thalassemia. This study investigates the heritability influence of alpha hemoglobin stabilizing protein expression and factors that may contribute to this. Results indicated that a major proportion of alpha hemoglobin stabilizing protein expression was influenced by genetic heritability (46%) with cis-acting factors accounting for 19% and trans-acting factors at 27%.
    Matched MeSH terms: Microsatellite Repeats/genetics
  5. Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, et al.
    PLoS One, 2016;11(3):e0152415.
    PMID: 27023787 DOI: 10.1371/journal.pone.0152415
    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
    Matched MeSH terms: Microsatellite Repeats/genetics
  6. Mahdy MA, Al-Mekhlafi AM, Abdul-Ghani R, Saif-Ali R, Al-Mekhlafi HM, Al-Eryani SM, et al.
    PLoS One, 2016;11(3):e0151265.
    PMID: 26966902 DOI: 10.1371/journal.pone.0151265
    Visceral leishmaniasis (VL) is a debilitating, often fatal disease caused by Leishmania donovani complex; however, it is a neglected tropical disease. L. donovani complex comprises two closely related species, L. donovani that is mostly anthroponotic and L. infantum that is zoonotic. Differentiation between these two species is critical due to the differences in their epidemiology and pathology. However, they cannot be differentiated morphologically, and their speciation using isoenzyme-based methods poses a difficult task and may be unreliable. Molecular characterization is now the most reliable method to differentiate between them and to determine their phylogenetic relationships. The present study aims to characterize Leishmania species isolated from bone marrows of Yemeni pediatric patients using sequence analysis of the ribosomal internal transcribed spacer-1 (ITS1) gene. Out of 41 isolates from Giemsa-stained bone marrow smears, 25 isolates were successfully amplified by nested polymerase chain reaction and sequenced in both directions. Phylogenetic analysis using neighbor joining method placed all study isolates in one cluster with L. donovani complex (99% bootstrap). The analysis of ITS1 for microsatellite repeat numbers identified L. infantum in 11 isolates and L. donovani in 14 isolates. These data suggest the possibility of both anthroponotic and zoonotic transmission of VL-causing Leishmania species in Yemen. Exploring the possible animal reservoir hosts is therefore needed for effective control to be achieved.
    Matched MeSH terms: Microsatellite Repeats/genetics
  7. Divis PC, Singh B, Anderios F, Hisam S, Matusop A, Kocken CH, et al.
    PLoS Pathog, 2015 May;11(5):e1004888.
    PMID: 26020959 DOI: 10.1371/journal.ppat.1004888
    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system.
    Matched MeSH terms: Microsatellite Repeats/genetics
  8. Radzak S, Khair Z, Ahmad F, Idris Z, Yusoff A
    Turk Neurosurg, 2021;31(1):99-106.
    PMID: 33491172 DOI: 10.5137/1019-5149.JTN.27893-20.4
    AIM: To determine the mitochondrial microsatellite instability (mtMSI) status in a series of Malaysian patients with brain tumors. Furthermore, we analyzed whether the mtMSI status is associated with the clinicopathological features of the patients.

    MATERIAL AND METHODS: Forty fresh frozen tumor tissues along with blood samples of brain tumor patients were analyzed for mtMSI by PCR amplification of genomic DNAs, and the amplicons were directly sequenced in both directions using Sanger sequencing.

    RESULTS: Microsatellite analysis revealed that 20% (8 out of 40) of the tumors were mtMSI positive with a total of 8 mtMSI changes. All mtMSI markers were detected in D310 and D16184 of the D-loop region. Additionally, no significant association was observed between mtMSI status and clinicopathological features.

    CONCLUSION: The variations, specifically the mtMSI, suggest that the mitochondrial DNA (mtDNA) can be targeted for genomic alteration in brain tumors. Therefore, the specific role of mtDNA alteration in brain tumor development and prognosis requires further investigation.

    Matched MeSH terms: Microsatellite Repeats/genetics
  9. Underwood AP, Bianco AE
    Mol Biochem Parasitol, 1999 Mar 15;99(1):1-10.
    PMID: 10215019
    Random amplification of polymorphic DNA (RAPD) was used to analyse genomic DNA from virgin females and males of Brugia malayi, with a view to identifying sex-specific differences predicted by an XX/XY system of chromosomal sex determination. A product of 2338 bp, amplified with the arbitrary primer 5' GTTGCGATCC 3', was obtained exclusively from males. Primers based on the sequence of this product amplified a DNA fragment of the expected size from each of two independent isolates of B. malayi (from Malaysia and Indonesia) by PCR. No reaction product was obtained from the closely related species Brugia pahangi. In a genetic cross between B. malayi males and B. pahangi females, F1 hybrid microfilariae were PCR-positive, indicating that the locus is paternally-inherited. Southern blotting demonstrated that the target sequence resides in the high molecular weight fraction of genomic DNA, confirming that it is of chromosomal, rather than mitochondrial, origin. Sequencing of the locus revealed significant similarity with members of a family of reverse transcriptase-like genes in Caenorhabditis elegans. In-frame stops indicate that the gene is non-functional, but multiple bands of hybridisation in Southern blots suggest that the RT sequence may be the relic of a transposable element. Multiple repeats of the dinucleotide AT occurred in another region of the sequence. These varied in number between the two isolates of B. malayi in the manner of a microsatellite, surprisingly the first to be described from the B. malayi genome. Because of its association with the Y chromosome, we have given the locus the acronym TOY (Tag On Y). Identification of this chromosome-specific marker confirms the XX/XY heterogametic karyotype in B. malayi and opens the way to elucidation of the role of Y in sex determination.
    Matched MeSH terms: Microsatellite Repeats/genetics
  10. Diez Benavente E, Campos M, Phelan J, Nolder D, Dombrowski JG, Marinho CRF, et al.
    PLoS Genet, 2020 02;16(2):e1008576.
    PMID: 32053607 DOI: 10.1371/journal.pgen.1008576
    Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.
    Matched MeSH terms: Microsatellite Repeats/genetics
  11. Zainuddin N, Jaafart H, Isa MN, Abdullah JM
    Neurol Res, 2004 Jan;26(1):88-92.
    PMID: 14977064
    Recent advances in neuro-oncology have revealed different pathways of molecular oncogenesis in malignant gliomas including loss of heterozygosity on chromosomal regions harboring tumor suppressor genes. In the present study, we performed polymerase chain reaction-loss of heterozygosity (PCR-LOH) analysis using microsatellite markers to identify loss of heterozygosity on chromosomes 10q, 9p, 17p and 13q in the Malays with malignant gliomas. Of 12 cases with allelic losses, seven (58.3%) cases showed LOH on chromosome 10q, three (25.0%) cases showed LOH on chromosome 9p, four (33.3%) cases showed LOH on chromosome 17p and two (16.7%) cases showed LOH on chromosome 13q. The cases include five (41.7%) cases of glioblastoma multiforme, three (25.0%) cases of anaplastic astrocytoma, three (25.0%) cases of anaplastic oligodendroglioma and one (8.3%) case of anaplastic ependymoma. Four cases showed loss of heterozygosity on more than one locus. Our findings showed that loss of heterozygosity on specific chromosomal regions contributes to the molecular pathway of glioma progression in Malay population. In addition, these data provide useful evidence of molecular genetic alterations of malignant glioma in South East Asian patients, particularly in the East Coast of Malaysia.
    Matched MeSH terms: Microsatellite Repeats/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links